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Abstract

3-D scene reconstructions derived from Structure from Motion (SfM) and Multi-View

Stereo (MVS) techniques were analyzed to determine the optimal reconnaissance flight

characteristics suitable for target reconstruction. In support of this goal, a prelimi-

nary study of a simple 3-D geometric object facilitated the analysis of convergence

angles and number of camera frames within a controlled environment. A series of

2-D images were acquired at convergence angles from 1◦ to 100◦ in 1◦ increments

with the number of images varied from 2 to 20 at each angle. Reconstruction ac-

curacy measurements revealed at least 3 camera frames and a 6◦ convergence angle

were required to achieve results reminiscent of the original structure. Furthermore,

improved results are realized with additional camera frames and expanded conver-

gence angles enabling refinement of the focal length and camera motion estimation.

The central investigative effort sought the applicability of certain airborne reconnais-

sance flight profiles to reconstructing ground targets. The data sets included images

collected from a synthetic 3-D urban environment along circular, linear, and s-curve

aerial flight profiles equipped with agile and non-agile sensors at look angles ranging

from 0◦ (nadir) to 60◦ in 15◦ increments. S-curve profiles and dynamically controlled

linear flight profiles produced the most diverse data sets resulting in superior recon-

struction accuracy and density of points. Linear profiles equipped with non-agile

cameras failed to reproduce identifiable results at near nadir look angles, but the

results were dramatically increased when multiple orthogonal passes were combined

and only overlapping images employed. Furthermore the effects of prominent images

pivotal to the reconstruction processes were analyzed where a bimodal structure was

observed relating the frequency of image use for each reconstructed 3-D vertex.
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3-D SCENE RECONSTRUCTION FROM AERIAL IMAGERY

I. Introduction

Over the past decade overhead imagery has experienced exponential growth in

both federal government and private sectors. While in its infancy, access to aerial im-

agery proved cost prohibitive to all but governmental organizations and multi-national

corporations; however, recent advancements in space lift technology, commercial im-

agery, and the emergence of unmanned aerial vehicles resulted in a fundamental

shift in the overhead imagery customer base. These radical evolutions significantly

decreased both the cost and complexity of acquiring overhead or aerial imagery re-

sulting in exponential demand growth as this imagery suddenly became available to

the general public. Fueling this expansion has been the public’s ravenous demand

for situational awareness manifesting itself in multiple forms including professional,

educational, and recreational uses. Professionals can quickly determine optimal sites

for natural resource exploration and potential development sites. Educators can ex-

plore natural landmarks and experience foreign countries with their students, while

recreational users can be immediately transported to the remotest areas of the world

through software tools such as Google Earth [6].

The public’s demand for this information has fueled several research areas focusing

on extracting additional information from existing data sets. Two paramount research

threads, Structure from Motion (SfM) and Multi-View Stereo (MVS), involve deriving

3-D structure information from 2-D images. Past researchers have developed the

necessary photogrammetric techniques to extract this information from both electro-

optical and multi-modal imagery [28, 23, 35] and now applications for these techniques
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are being found in numerous scientific ventures including synthetic scene regeneration

and city and terrain modeling. The implications of this research are far-reaching

especially when used to augment remote sensing efforts.

1.1 Motivation

Traditionally depth information is derived from either direct ground measure-

ments or more commonly, active detection and ranging efforts such as LIDAR or

RADAR which measure the ground reflections from emitted electromagnetic pulses.

These methods provide an extremely accurate mapping of the scene and have been

the gold standard by which 3-D scene reconstructions are measured, but their use is

not applicable or available in many situations. For instance, the collector is required

to actively interrogate the scene and requires advanced transmitters and receivers

to perform the collection. This limits the availability by which one can obtain the

required depth information as these systems are rare and existing high fidelity global

coverage is very limited. Additionally, areas denied to manned or unmanned air ve-

hicles preclude the 3-D mapping of the scene via traditional techniques. However,

overhead space assets collecting 2-D electro-optical imagery are not limited in this

regard, and thus the ability to extract 3-D information from 2-D electro-optical im-

agery is of immense important to the military, intelligence community, and national

decision makers. Therefore it is imperative to develop the methodology to derive 3-D

depth information using the plethora of existing electro-optical sensors.

SfM’s immediate consequence to both the military and the private sectors is the

enablement of computer vision, thereby opening the realm of autonomous navigation

in cluttered environments. In 1995, Dickmann demonstrated the autonomous naviga-

tion of a passenger vehicle at speeds of 110 mph while simultaneously maintaining lane

control, reading traffic signs, and passing slower traffic [28]. Beyond robotic vision,
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SfM possesses the potential to mitigate problems found in a number of disciplines

specific to military operations and intelligence. With increased reliance on precision

targeting, our nation’s warfighting capability heavily relies on remotely sensed intel-

ligence products from airborne and satellite platforms. The fusion of these disparate

data sets allows for in-depth analysis of sensitive targets. For example, fusion of

SfM and hyperspectral imaging (HSI) culminates in revolutionary advancements in

remote sensing. Independently, HSI collects reflected and emitted spectra from tar-

get objects facilitating target detection and object classification, camoflauge defeat,

vegetation analysis, and disaster assessment. Despite HSI’s extraordinary abilities,

problems such as shadowing, variable illumination loading, occlusions, and parallax

effects hinder target recognition and extraction of scene information. These problems

lead to inaccurate hyperspectral measurements and possible misidentification of tar-

get materials. Previous efforts have validated the fusion of HSI with LIDAR datasets

to mitigate the 3-D influences [35]; however, LIDAR collection systems rarely accom-

pany hyperspectral collection systems and existing datasets are relatively nonexistent.

Fortunately, SfM presents a viable alternative to LIDAR.

SfM development benefits the commercial and industrial sectors as well. Improve-

ment of hyperspectral registration and classification allow damage response coordi-

nators to quickly determine the extent of structural damage on a city wide scale.

Archaeologist’s reconstruction of ancient sites can forgo an intensive process of erect-

ing a grid and documenting the placement of all finds, and medical surgeons can

gauge depth while performing laparoscopic or endoscopic surgeries [33]. In all, it is

difficult to determine a field not impacted by the tremendous promise of 3-D scene

reconstruction.

As an demonstration of SfM’s ability to reconstruct complex scenes, the Air Force

Institute of Technology’s central campus was reconstructed using images acquired
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in an unstructured pattern using a common consumer grade camera. Areas void

of vertices represent either non-imaged scenes or areas obscured by trees or other

vegetation.

Figure 1. 3-D reconstruction of AFIT’s main campus. The reconstruction contains
3,979,668 3-D vertices generated from 241 images.

1.2 Problem Statement

The collection of source imagery required to reconstruct a 3-D scene has included

controlled laboratory collection, limited overhead collection efforts, and massive In-

ternet wide sourcing resulting in hundreds of thousands of images [20]. These efforts

validate the reconstruction algorithm’s ability to reconstruct the imaged scene; how-

ever, little if any analysis exists to determine the optimal airborne collection char-

acteristics necessary for an accurate reconstruction. Tradeoffs between loiter time,

proximity to target, number of images, angular diversity, and convergence angle on

the reconstructed scene’s approximation to the real world environment have yet to

be determined. If 3-D reconstruction techniques are to be applied to everyday scene

reconstruction and remote sensing problems these relationships must be quantified.

1.3 Research Objectives

This thesis presents a fundamental analysis of the image collection requirements

and reconstruction of accurate 3-D scene models derived from 2-D imagery sets.
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Specifically the relationship between the final 3-D model and various collection pa-

rameters will be investigated.

While the objectives of this research are threefold, it focuses primarily on the

accuracy of the reconstructed scene model compared to actual scene dimensions and

geometry. The salient principle governing the final reconstruction is the quality of

input data. The linear and non-linear methods employed by the SfM and MVS al-

gorithms require comprehensive and diverse data sets to achieve optimal solutions.

Therefore the three specific research areas to be investigated include: effects of con-

vergence angles, number of camera frames, and finally the effects of variable viewing

angles stemming from typical airborne reconnaissance flight profiles to include an-

gular diversity, static versus dynamic imaging, and target visibility. To investigate

these three characteristics, a multi-phase effort is required in which the initial phase

explores the fundamental principles inherent to the reconstruction. The second phase

analyzes the effects of variable viewing geometries to include angular diversity and

magnification of the target within the data sets. As mentioned earlier the reconstruc-

tion methods are highly dependent on a diverse input data. Data sets containing

variations in the both the viewing geometry and spatial dimensions of the target

structure should provide the highest quality results. The necessary aerial reconstruc-

tions required to obtain this degree of diversity within the dataset will be the salient

feature of this effort.
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II. Theory

2.1 Chapter Overview

This chapter presents the fundamental techniques required for reconstruction of

a 3-D scene. This process, commonly referred to as Structure from Motion (SfM)

within the photogrammetry and computer vision research areas, has experienced re-

vitalized attention in recent years. Research threads such as autonomous navigation,

situational awareness, and terrain mapping have incorporated themselves into every-

day commercial products such as robots, proximity sensors in vehicles, and advanced

image processing. Such efforts have provided the means for robots to navigate hall-

ways, vehicles to autonomously navigate along interstate routes at speeds in excess

of 110 mph, and the inclusion of the first down line in televised football games [28].

These technological advancements are made possible through 3-D vision and the

exploitation of epipolar geometry to extract depth geometry from multi-view im-

ages. Within the framework of presenting the steps required for 3-D reconstruction,

contributions from past and current researches will be incorporated in conjunction

with mathematical tools and algorithms used to recreate the 3-D images seen in the

following chapters.

This chapter consists of two complementary components. The first half is limited

to a qualitative overview of visual perception and epipolar geometry. It is hoped

by limiting the discussion to the general topics the reader will gain the necessary

overview to fully understand the following mathematical development in the latter

half. The second half presents an incremental process to recover depth information

with corresponding algorithms to assist.
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2.2 Visual Perception: The Human Eye

The human eye defines our understanding of depth perception and serves as the

foundation for the implementation of 3-D computer vision. The combination of iris,

lens, and retina are analogous to a mechanical imaging system consisting of an aper-

ture, optical lens, and imaging focal plane. Therefore a brief explanation to the

underlying mechanisms responsible for human depth perception aid immeasurably to

the final understanding of machine vision.

2.2.1 Accommodation and Convergence.

The eye’s ability to perceive depth stems from two functions, accommodation

and convergence [32]. Accommodation results from the eye’s ability to temporarily

distort the lens via the ocular muscles to focus a real world object on the retina. Depth

information is extracted from different focal lengths required to focus scene objects

and provides absolute, or qualitative, depth information. Typically, accommodation

is regarded as a weak source of depth perception and only applicable at close ranges

within eight feet of the individual. The ability to derive depth information based

on the focal length alone explains why marginal depth perception is retained with a

single eye.

Convergence provides a much more powerful means of depth perception and is

measured as the angle the eyes turn toward one another to focus on nearby objects.

Distant objects require little convergence, conversely, nearby objects require signifi-

cantly more deflection to fixate on the object. Similar to accommodation, convergence

provides absolute depth information with respect to viewer and is limited to ranges

less than six to eight feet [32]. The range limitations are due to the negligible effect

of distance on convergence angle as seen in Figure 2.
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Figure 2. With a fixed human pupillary baseline, c, of 2.5 inches, convergence angles,
a, sharply decrease at near distances, but exhibit little variation at distances, d, beyond
8 feet or approximately 2.5 meters [32].

Furthermore, Figure 3 provides a visual depiction of this phenomena where the

convergence angle is defined as the angle between two rays emanating from the object

and passing through the left and right eye. θ1 and θ2 represent two such angles. In hu-

mans the pupillary distance (PD) is fixed. However in remote imaging situations, the

distance between the camera centers is variable, and the convergence angle becomes

an important parameter in optimizing scene reconstruction accuracy.

Figure 3. Human vision relating both convergence and stereopsis. The convergence
angles, θ1 and θ2, change as a function of D. Furthermore the lateral displacement on
the retinas depending on whether nearby objects are closer (c) or further (f) than the
focusing point (p) resulting in a stereopsis effect. Image adapted from Palmer [32].
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Both accommodation and convergence provide accurate and absolute depth infor-

mation to facilitate interactions with nearby objects. However, depth perception at

longer distances is subjugated to the area of stereopsis.

2.2.2 Stereopsis and Parallax Effects.

Stereopsis relates the lateral displacement, or binocular disparity, between similar

images on the retinas to perceive depth. Although similar to convergence, stereopsis

is distinctly different in that it only provides a relative distance between objects.

Since objects surrounding the focused object appear at different locations on the

retina, the magnitude and direction of the lateral displacement invoke a sense of

relative depth perception. This phenomena can be seen by referencing Figure 3 and

noting the position of the three points, c, p, and f . The eyes fixate on point p

and the corresponding images are projected onto the center of the retina as p′ and p†.

Similarly, the close (c) and far (f) points project on the retina, but in different relation

to projections p′ and p†. The magnitude and direction of the lateral displacement

between p′ → c′ and p† → c† allows for relative depth perception.

Stereopsis stems from the parallax effect which is the relative displacement of an

apparent object when viewed along two different sight lines. This effect can be directly

experienced by extending one’s finger at arm distance and aligning it with a distant

point. By slightly shifting one’s head, the apparent position of the finger seems to

move in relation to the distant point although both remain stationary. Furthermore

by viewing the same setup with both eyes open and focusing on the far wall, two

fingers appear slightly offset from one another. This offset represents the lateral

displacement of the object on the each retina.

As a mathematical example, the minimum separation distance required to perceive

two objects at differing depths can be determined using a similar scenario as that as
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seen in Figure 3. The human pupillary distance (PD) averages 2.5 inches while the

typical difference between angles which can be resolved by the retina is 0.008◦ [29].

Mathematically, McNeil showed the minimum depth which can be stereoscopically

achieved, ∆D, is calculated by

∆D =
D2 × tan (η)

PD −D tan (η)
≈ D2η

PD −Dη
(1)

where PD is the pupillary distance, D is the distance to first object, and η is the

binocular disparity as defined as θ2−θ1. Note the tangent small angle approximation,

tan (θ) ≈ θ. For example, when two objects are displaced 10 feet from the viewer, the

objects must be separated by 0.83 inches to perceive a difference in depth between

the objects.

The stereoscopic arrangement in Figure 3 infers a mechanical setup with two

distinct cameras or a single translating camera capturing multiple frames along its

path. Focal plane arrays image real world objects which are recorded as pixels (p and

p′) on each image. The relationship between the correspondences, p′ 7→ p†, c′ 7→ c†,

and f ′ 7→ f † forms the basis for extracting depth information from 2-D images.

Clearly, stereopsis serves as the stepping stone by which human perception relates to

computer vision.

10



Figure 4. Stereopsis applied to computer vision. Using two overlapping frames acquired
at equivalent vertical heights, structure depth can be extracted through simple ray
tracing and trigonometry [36].

In Figure 4 two frames, analogous to the human retina, acquire overlapping images

of a structure with a height hA above the datum from equivalent distances. Using

point P as the origin, Wolf and Dewitt showed the structure height is dependent on

the baseline distance (B), distance from camera to datum (H), camera focal length

(f), and the positions of the point on each of the focal arrays as seen in the following

formula [36].

hA = H − Bf

xa − x′a
(2)

Furthermore, the equivalent ground distances may also be extracted through the

following equations.

XA = B
xa

xa − x′a
(3)

YA = B
ya

xa − x′a
(4)

These three equations are commonly referred to as the parallax equations and serve
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as the preliminary principles to derive 3-D structure. However, the equations are lim-

ited in that the camera motion must be linear, maintained at constant height above

the datum, and the focal plane parallel to the datum. These requirements introduce

significant limitations which may prevent collection in operationally sensitive situa-

tions. Fortunately, epipolar geometry offers a generalized approach to achieve the

same results without these limiting conditions.

2.3 Epipolar Geometry Introduction

The ability to extract an additional dimension from 2-D images is possible through

epipolar geometry. Epipolar geometry, or the geometry of stereo vision, describes the

relationship between two images of the same real world scene. In principle given two

distinct images of the same 3-D scene, geometric relationships between the 2-D image

points allow the derivation of a mathematical relationship between the image points.

At the most basic level this relationship is defined within the homography matrix,

Hπ, which captures the rotation and translation between images. Visually this is

represented in Figure 5.

Figure 5. Basis of epipolar geometry [23].
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Within Figure 5, two cameras image a real world scene, represented by plane π,

in which a unique feature Xπ such a corner of a window or tip of a steeple, is imaged

on each camera’s focal plane array as x and x′. For simplicity the two cameras will be

referred to as the left and right camera and only the left camera analyzed, although

the same logic applies for the camera on the right. Since the camera centers, C and

C ′, are distinct, they are mapped to the imaging plane of the other camera. These

locations are termed epipolar points and denoted as e and e′. At this point it is

important to note the imaging plane exists as a theoretical plane extending beyond

the metric dimensions of the camera’s focal plane array. Therefore e and e′ may not

be located on the actual sensor unit of the camera. At this point an epipolar line,

l, connecting e and x represents the projection of the ray joining Xπ to x′ and C ′.

From the left camera, the ray between C and Xπ is seen as a point; however, in the

right camera this same ray maps to the epipolar line, l′. Symmetrically the inverse

is true where the ray from Xπ to C ′ is viewed as l on the left camera. Therefore,

the epipolar line is a function of the 3-D point Xπ and all epipolar lines in one image

must intersect the epipolar point of that image. In effect when relating two images

the epipolar point is the source of radiating epipolar lines relating correspondences

from image to image. Figure 6 depicts this relationship.
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Figure 6. Projection of epipolar lines [23].

If the projection points, x and x′, and camera centers, C and C ′, are known then

the epipolar line l′ can be determined. Since point Xn projects onto the left image at

point x the correspond point, x′ must lie on the epipolar line l′ on the right image.

Depth information from Xn can be inferred by triangulating the intersection of
−→
Cx

and
−−→
C ′x′. In summary, extraction of the corresponding image points and camera

centers is the pivotal data required for epipolar geometry and 3-D reconstructions,

and the pursuit of their determination is a main focus point.

In reality, the camera pose is often unknown and aberrations from the camera’s

imaging optics, such as pincushion and barrel distortion, alter the perceived epipolar

lines and frustrate direct inference of epipolar lines from corresponding image features.

Therefore image distortion correction becomes the first step in any reconstruction

effort; however, methods of correcting distorting images will not be addressed in this

effort. Without a priori knowledge of of the cameras, the images must be related to

one another by in-scene information alone upon which the fundamental matrix, F ,

which relates the two images is developed.

For the purposes of this effort we will assume camera parameters are unknown

and fundamental matrix reconstruction techniques will be employed. Hartley and
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Zisserman’s text, Multiple View Geometry, provides the necessary steps to derive an

initial guess of the 3-D point location [23]. The process consists of three steps to

estimate a 3-D point location from the correspondences, x 7→ x′, between each image.

• Derive the fundamental matrix, F

• Derive the camera matrices, Π1 and Π2, from F

• Estimate the 3-D coordinates, X, from Π1 and Π2 as well as the 2-D points, x
and x′

With these steps it is possible to obtain an initial estimate for the sparse 3-D

structure of the object. In order to further refine the 3-D estimates, non-linear re-

gression analysis is performed using all possible correspondences in a step termed

bundle adjustment in which all 3-D vertices and camera centers are optimized to

minimize reconstruction error. The Levenberg-Marquart technique provides a robust

method for minimizing the reconstruction problem, and ultimately offers an accurate

sparse reconstruction consisting of hundreds of 3-D points derived from a series of im-

ages measuring 640×400 pixels. Further analysis can result in a dense reconstruction

by searching for additional correspondences along the epipolar lines with knowledge

of the C and C ′ resulting in an order of magnitude increase in the number of 3-D

points.

2.4 Recovering 3-D Depth Information

The preceding section frames the analytical discussion below. In this section the

reconstruction process is broken down into distinct components beginning with feature

extraction to the final non-linear regression techniques to estimate depth information.
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2.4.1 Approach.

The basic premise to recovering 3-D scene information from multiple view geom-

etry consists of five steps:

• Image generation

• Feature extraction from imagery

• Derive correspondences between extracted image features

• Derive initial group relationship and perform sparse bundle adjustment

• Incorporation of derived camera parameters for dense point cloud reconstruction

Within this process variants exist depending on foreknowledge of scene geometry

and camera parameters. For instance, inclusion of the camera’s IOPs and EOPs

(internal/external operating parameters such as the camera calibration parameters

(K) and real world camera pose, [R, T ], within the SfM and MVS pipelines provide

real world knowledge and allow for absolute or real world reconstruction. Note the

parameters, K, R, and T are discussed in detail in the following section. However

for the purposes of this research, a priori knowledge of these parameters will not be

included to generalize the reconstruction problem thereby allowing future readers the

ability to obtain 3-D reconstruction independent of prior camera or scene knowledge.

2.4.2 Image Generation.

Under the assumptions of a pinhole camera approximation and lambertian sur-

faces, the issue of image formation is reduced to simple ray projection where only three

transformations must be accounted for: transformation between camera and world

frames, projection of 3-D world coordinates to 2-D image coordinates, and transfor-

mation between image coordinate frames [28]. Under realistic conditions aberrations
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introduced by optical elements, image noise, and peculiarities in the actual camera

focal plane introduce second and third order effects which may confuse the relation-

ship between the real world coordinate and recorded image point; however, under this

discussion an ideal perspective camera is considered.

The first transformation between camera and world frames is governed by the

rigid body transformation g = [R, T ] of the real world coordinate, Xo,

X = RXo + T (5)

where X is the same relative point Xo with reference to the camera frame and R and

T are the required 3 × 3 rotation matrix and 3 × 1 translation vector between the

camera and world frames. The rotation and translation components are frequently

combined into homogeneous coordinates as seen below.

g =

R T

0 1

 (6)

The second transformation is the projection of the 3-D world coordinates onto

the 2-D image plane. The point X is projected onto the image plane through the

relationship,

x =

x
y

 =
f

Z

X
Y

 (7)

where f is the focal length of the camera system, and when expressed in homogeneous
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coordinates Equation 7 can be written as

Z


x

y

1

 = λ


x

y

1

 =


f 0 0 0

0 f 0 0

0 0 1 0





X

Y

Z

1


∈ <4×4 (8)

Note in Equation 8, the Z coordinate remains unknown and therefore is assigned as

the positive scalar, λ.

The third and final transformation involves the intrinsic camera parameters where

the ideal image coordinates x = [x, y, 1]T are related to the actual image coordinates

x′ = [x′, y′, 1]T . Intrinsic camera parameters such as pixel dimensions may also be

included by modifying the above matrices to define the camera calibration matrix,

K =


fsx fsθ ox

0 fsy oy

0 0 1

 (9)

where sx and sy are the dimension of image in pixels, sθ skew of the pixel (commonly

zero), and ox and oy represent the optical center of the image plane which is typically

the center of the recorded digital image. This matrix is pivotal in the subsequent

steps to include final Euclidean reconstruction and many of the reconstruction algo-

rithms are greatly simplified when foreknowledge of the camera’s IOPs are known

and inserted into K. However knowledge of K is not required as methods can suggest

or infer the matrix when minimizing the final reconstruction. An excellent resource

for determining this matrix is the MATLAB camera calibration toolbox created by

Jean-Yves Bouguet [3]. Furthermore, autocalibration techniques may be employed

to determine the camera calibration matrix from scene information alone and substi-
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tuted at this point to obtain partially calibrated cameras. These techniques utilize

the absolute quadric constraint and require an initial focal length estimate. Auto-

calibration techniques will be briefly addressed in this effort, but Yi Ma provides an

excellent discussion in his text [28].

Finally when all three transformations are included the overall image formation

is governed by

λ


x′

y′

1

 =


fsx fsθ ox

0 fsy oy

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0


R T

0 1




Xo

Yo

Zo

1


(10)

In shorthand Equation 10 can be written as

λx′ = KΠoX = KΠogXo (11)

where Πo is a 3× 4 identity matrix seen in Equation 10.

The parameters, K, R, and T , are the core variables determined within the SfM

process. In a controlled collection environment prior knowledge of the camera calibra-

tion matrix, K, exists or can be easily ascertained using existing camera calibration

methods mentioned earlier. Additionally, the rotation and translation components

can be determined through GPS coordinates and internal navigation systems which

relay the exact coordinates and projection vectors between subsequent images. In

this situation, extremely accurate Euclidean reconstruction is possible as shown by

Graham [21]. Nevertheless in this effort and the analysis below, no such assumptions

or prior knowledge is known. Instead the techniques below provide solutions to the

most generalized and inherently complex data sets, those in which multiple cameras

have been used and no prior knowledge exists relating camera positions.
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2.4.3 Feature Extraction.

The next step in scene reconstruction is the extraction of invariant image features.

Significant research has been conducted in this field resulting in several techniques

with the ability to extract hundreds even thousands of keypoints [22, 27]. The most

popular techniques entail edge detection algorithms due to their robustness and re-

peated ability to extract keypoints. Both the Scale Invariant Feature Transform

(SIFT) algorithm and the Harris Corner Detector accompanied with the Difference

of Gaussian (DoG) filter are used in the software algorithms and will therefore warrant

additional attention.

2.4.3.1 Harris Corner Detector.

Invariant image features prove an excellent source for image correspondences due

to the minimal dependence upon changes in perspective, scene intensity, and other

image characteristics which differ between images. Corners, defined as the intersec-

tion of two edges, are outstanding sources since they are rotationally invariant and

therefore suitable for the multi-view problem. It is important to note most corner de-

tectors, including the Harris Corner Detector, systematically search images for large

omnidirectional gradients which may not correlate to a real world corner. Regardless

of this shortcoming, corner detection continues to be a leading method in feature

extraction.

To exploit this rotationally invariant feature, Harris and Stephens [22] improved

upon existing corner detection algorithms notably Moravec’s corner detector [30] by

mapping the intensity differential of a test window, w (x, y), which translates over

an image with respect to direction. This refinement increased repeatability under

small image variations and near edges; however, the detector remains very sensitive to

changes in image scale and requires all input images to have identical pixel dimensions.
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The filter functions on the premise a small test window records intensity variations as

it translates over the surface of the image, and in such case translation over a corner

results in a large intensity shift in all directions, as seen in Figure 7

Figure 7. Effects of local window intensity as it translates over a homogeneous region
(A), edge (B), and corner (C) of a digital image (blue triangle).

As stated earlier, the Harris filter is based upon Moravec’s previous efforts. Moravec’s

detection filter succinctly determines both edges and corners, but edges are overem-

phasized, and the response is extremely noisy. The Moravec’s filter is mathematically

expressed as

E (u, v) =
∑
x,y

w (x, y) [I (x+ u, y + v)− I (x, y)]2 (12)

where E represents the difference between the original and translated window, u and

v are the translation magnitudes in the x and y direction, w (x, y) represents the

location of the window mask, I (x+ u, y + v) is the measured intensity within the

translated window, and I (x, y) is the intensity of the original window.

The principle distinction between Moravec’s treatment and Harris and Stephen’s

is the inclusion of Taylor series expansion of the intensity terms as well as the inclusion

of a Gaussian window mask [22]. The difference in intensities is now composed of the

first order Taylor expansion accompanied with a Gaussian weighting function as seen
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in Equation 13

E (u, v) ∼=
[
u v

]
M

u
v

 (13)

where M is computed from image derivatives. M in itself is defined as

M =
∑

w (x, y)

 I2
x IxIv

IxIv I2
v

 (14)

where Ix and Iy are the partial derivatives of I (x, y) with respect to x and y, and

w (x, y) is the Gaussian weighting function.

Finally, the response of the Harris corner detector is the difference between the

determinant of M and the trace squared of M scaled by an empirically determined

constant, k

R = det M− k (trace M)2 (15)

where k typically has values between 0.04 and 0.06 [22].

The value of R only depends upon the eigenvalues of M and is therefore large for

corners yet negative for edges thereby mitigating Moravec’s issues with edge detection.

In this manner a region is classified as a corner if the response function, R, detects

an eight way local maximum. Correspondingly, edges are classified as such if the

response is both negative and local minima in either the x or y direction.

2.4.3.2 Difference of Gaussian Filter.

Whereas the Harris corner filter excels at locating corners, the presence of edges

and lines are of great importance to epipolar geometry. The Difference of Gaussian

filter (DoG) excels in this area and acts as a band pass filter enhancing the visibility

of edges and other details within an image while limiting the effects of high frequency

noise, a common problem for edge detectors. The DoG filter detects edges within
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the image by subtracting one blurred version of an image by a second, less blurred

version of the original. Mathematically, this is accomplished using a Gaussian filter

as seen in Equation 16

Gσi (x, y) =
1√

2πσi
e
x2+y2

2σ2
i (16)

with Gaussian line widths σ1 and σ2 where σ1 > σ2.

The process begins with obtaining two blurred images, g1 and g2.

g1 (x, y) = Gσ1 (x, y) ∗ f (x, y) (17)

g2 (x, y) = Gσ2 (x, y) ∗ f (x, y) (18)

Finally the difference between the two smoothed images results in the Difference of

Gaussian function.

g1 (x, y)− g2 (x, y) = (Gσ1 −Gσ2) ∗ f (x, y) = DoG ∗ f (x, y) (19)

Figure 8 represents a visual depiction of the DoG filter where the observer can

note the inverted Mexican hat profile characteristic of the more general Laplacian of

Gaussian filter.
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Figure 8. Typical inverted mexican hat seen in DoG filter (solid line). DoG filter
resulted from difference of two Gaussian functions with σ1 = 2 (dashed) and σ2 = 1
(dotted) respectively.

2.4.4 Deriving Image Correspondences: Scale Invariant Feature

Transform (SIFT).

The preceding section simplifies the complex problem of registering two images to

one where only a discrete number of points must be co-registered. This registration

process correlates feature points, x and x′, of the same real world point recorded by

the two images. The process of matching invariant image features between images,

and thereby generating image correspondences, builds the foundations of epipolar

geometry and ultimately the success of the reconstruction process.

Several techniques are available to relate extracted feature to one another, and

the Scale Invariant Feature Transform (SIFT) operator designed by David Lowe [27]

has become the industry standard in image registration due to its ability to identify

and register numerous features across large image sets. SIFT operates by detecting

keypoints using a cascade filtering approach to first identify candidate locations which
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are then subjected to further examination. The uniqueness of the cascade filtering

approach is best characterized by exploitation of variable scale space where keypoints

are found at the inherent image scale but across a variable scale space. This evolution

allows SIFT to determine a robust set of scale invariant keypoints.

The SIFT process is best explained by discussing the extraction of keypoints of

a single image and then repeating the process to all images contained within the

image database. In essence, the SIFT process includes five steps which are described

in detail below: scaling each image, convolving it with multiple Gaussian functions,

subtracting the Gaussian representations, comparing neighboring differences to ex-

tract scale invariant keypoints within the original image, and finally describing each

keypoint by its local image gradient.

The first step entails scaling each image into a n× n subset of the original image

to provide the basis for determining scale invariant keypoints. Different octaves are

obtained by reducing the scale factor by 2 between each octave to define the vari-

ous scale spaces. This step ensures only those features which readily occur across

multiple scales will be recorded as keypoints. Secondly, each scaled image is convo-

luted by a variable scale Gaussian function where the standard deviation is varied

by σi+1 =
√

2σi from image to image. This populates each octave with multiple

Gaussian convolutions as seen in left side of Figure 9a. A Difference of Gaussian

function is applied in the third step to identify potential keypoints similiar to the

process described in Subsection 2.4.3.

25



(a) SIFT octaves [27] (b) DoG comparison pixels [27]

Figure 9. Representation of the SIFT octaves and calculation of maxima and minima
between each octave.

The fourth step extracts the minima and maxima keypoints from the filtered

images by comparing a pixel to its 26 neighbors in a 3-by-3 region at the current and

adjacent scales as seen in Figure 9b which is a detailed representation of the right

side of Figure 9a. The pixel is selected if and only if it is a local maxima or minima

when compared to adjacent pixels. Lowe states the cost of checking all pixels and

comparing each to all neighbors is reasonably low due to the fact most sample points

are eliminated within the first couple of iterations.

The fifth and final step computes the keypoint descriptor as seen in Figure 10.

To compute the keypoint descriptor, SIFT maps the gradient and orientation of each

image point surrounding the keypoint locations using a Gaussian window to weigh

neighbor contributions. For purposes of this explanation, a 8-by-8 region falling within

the Gaussian window constitutes a 4-by-4 subregion where the individual gradient

magnitude is added to the nearest bin.
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Figure 10. Generation of keypoint descriptors [27].

In reality the algorithm uses a 16-by-16 region for comparison. The mapping is

stored in a 4×4×8 = 128 element feature vector for each keypoint which can be used

to compare against the regional descriptions of keypoints in other images which follow

an identical process as that described above. Those image keypoints falling within the

closest histogram vectors are assigned as potential matches and referred to as nearest

neighbors. Lowe continued to show the keypoints are particularly invariant to image

rotation and scale, robust across variable affine distortions, noise, and illumination

differences which make this method of feature detection suitable for the purposes of

this effort.

The output results of the SIFT algorithm are shown in Figure 11. In each image

roughly 1000 keypoints were generated from a fairly featureless scene which highlights

the applicability of the SIFT algorithm. It is important to note that not all image

keypoints will be matched to keypoints from another image as seen in right side of

Figure 11. This is due to a number of issues including keypoint obscuration from

sequential images which stresses the importance of image selection. In principle, the

camera focal points must be sufficiently distinguished from one another yet not to

such an extent to hinder matching of sufficient number of image correspondences.
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Figure 11. Scale Invariant Feature Transform results. In the left image, the blue arrows
represent feature locations and magnitude of gradient. Note the images contain 1026
and 927 keypoints. The right images portrays the matching results based upon the
gradient vectors. In total, 134 matches were found between the images with only two
outliers.

2.4.5 Derivation of the Fundamental Matrix.

In deriving the fundamental matrix, F , we must return to the epipolar geometry

described in Section 2.3 with the addition of correspondences determined by SIFT

represented by x1 7→ x′1 and x2 7→ x′2 in Figure 12. The fundamental matrix states

for a real world point X existing on plane π the ray must pass through the camera

center and appear as point x on the focal plane of the camera. When viewed from

the second camera center, ray X1C will map to the second camera’s focal plane as

l′1.
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Figure 12. Epipolar geometry with two keypoint correspondences [23].

The fundamental matrix is the principle algebraic representation of the epipolar

geometry described in Figure 12. Each point x maps to an epipolar line, l′, according

to x 7→ l′. This correlation represents a mapping from points to lines which represents

the fundamental matrix. Mathematically the fundamental matrix is a 3 × 3 matrix

of rank 2 containing seven degrees of freedom if the constraint det F = 0 is enforced.

The fundamental matrix can be derived in a number of manners; however, a

geometric derivation is provided. Referring to Figure 5, x relates to x′ through a 2-D

homography matrix, Hπ, where Hπ represents the transfer mapping from one image

to another via plane π. Therefore x′ = Hπx and the epipolar line may be written

as l′ = e′ × x′. Following the substitution, x′ = Hπx, we arrive at the fundamental

matrix definition.

l′ = e′ ×Hπx = Fx (20)

The most basic property of the fundamental matrix is seen in Equation 21 which
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is required between any two image correspondences,

x′TFx = 0 (21)

thereby relating and constraining SIFT derived correspondences, xi 7→ x′i, found in

the previous section.

In computing F , each correspondence is represented in homogenous notation as

x = [x, y, 1]T and x′ = [x′, y′, 1]T and seven such correspondences are required to

provide one linear equation for each unknown entry. If F consists of a 3×3 matrix with

each entry represented by fij, then Equation 21 can be used to write the equations

in the following form,

x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0 (22)

If this equation is written as a vector inner product of the 9-element vector, f , the

following form can be derived.

[
x′x x′y x′ y′x y′y y′ x y 1

]
f = 0 (23)

Finally for a set of n matches a homogenous set of linear equations where x′TFx = 0

determines a set of equations in the form Af = 0.

Af =


x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1

...
...

...
...

...
...

...
...

...

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn

 f = 0 (24)

The solution to matrix A in Equation 24 must have at most a rank of 8 to be

unique and found using linear methods such as the direct linear transform. However
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in the presence of noise or when the matrix is overdetermined, the rank of matrix A

may be 9 and demand a least-squares solution. In such case a non-linear minimization

technique such as the Levenberg-Marquart method is preferred. Calculations in the

form of Ax = 0 where A is known are extremely common in SfM/MVS computations.

For example, the fundamental matrix, epipolar lines, and triangulation of the 3-D

coordinates as will shortly be discussed all occur in this format. Therefore it is

common practice to find x that minimizes ‖Ax‖ subject to ‖x‖ = 1 by computing

the SVD of A where A = UDV T and x is the last column of V .

2.4.6 Derivation of Camera Projection Matrices, Π, from F .

The camera projection matrices, Π1 and Π2 for a two-view system, relate the real

world coordinates to the actual image coordinates. Hartley and Zisserman determined

if and only if ΠT
2 FΠ1 is skew symmetric, the fundamental matrix corresponds to the

projection matrices, Π1 and Π2. If we invoke projective ambiguity Π1 can be simply

defined as

Π1p = [I|0] (25)

where I is a 3 × 3 identity matrix. The second projection matrix involves the skew

symmetric matrix defined as,

[e′]× =


0 −e′3 e′2

e′3 0 −e′1

−e′2 e′1 0

 (26)

where e′ can be directly related to the translation, T , between the camera centers

when known or the relationship F T e′ = 0. Therefore the second projection matrix

can be defined as

Π2p =
[
[e′]× F |e

′] (27)

31



2.4.7 Initial Estimate of 3-D Coordinates.

The initial estimate of the 3-D scene is accomplished using the camera matrices

defined in the previous section and linear triangulation methods. The method of

linear triangulation is directly related to the direct linear transform or SVD methods

used to solve for the fundamental matrix. Therefore when x = Π1pX and x′ = Π2pX

are combined into AX = 0 the linear set of equations in X is developed.

x× (Π1pX) = 0

x
(
Π3T

)
−
(
Π1T

)
= 0

y
(
Π3T

)
−
(
Π2T

)
= 0

x
(
Π2T

)
− y

(
Π1T

)
= 0

(28)

where ΠiT are the rows of Π. Finally A can be represented as

A =



xΠ3T
1p − Π1T

1p

yΠ3T
1p − Π2T

1p

x′Π3T
2p − Π1T

2p

y′Π3T
2p − Π2T

2p


(29)

Figure 13 shows the sparse point cloud and camera poses derived from a set of 13

images related to those found in Figure 11 resulting in 1539 vertices. This illustration

accurately depicts SfM’s ability to not only accurately reconstruct the scene but also

identify relation pose of cameras which is known through the relationship, C = −R′∗T

from the provided R and T motion components of the rigid body estimate.
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Figure 13. Structure from Motion reconstruction of AFIT blocks. Scene reconstructed
with 13 cameras resulting in 1539 vertices.

2.5 Random Sampling Consensus (RANSAC)

Unfortunately real world data contain erroneous values which negatively influence

the final reconstruction. Therefore a method to remove outliers is preferable and of

great benefit to any linear or non-linear process. Typically a least squares approach

to estimating parameters involves analysis of all data points under the assumption

all points are valid. However when data points do not fall within this assumption,

erroneous points lead to misrepresentation of the ideal model line. Random Sam-

pling Consensus (RANSAC), a robust parameter estimator developed by Fischler

and Bolles, iteratively removes gross outliers to mitigate their effect on the final solu-

tion [17]. Typically within the computer vision problem, erroneous correspondences

lead to poor estimation of the fundamental matrix, and RANSAC alleviates these

measurement errors by culling the gross outliers. Optimization after outlier removal

leads to a much more usable final solution. Figure 14 shows several well-behaved
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points and a gross outlier. Standard least squares regression produces a poor fit to

the data, whereas removal of the gross outlier results in an accurate linear fit.

Figure 14. RANSAC line fitting compared to iterative least squares.

The RANSAC process fits a line to a set of randomly selected data points with a

minimally derived model containing two points. All data points are then analyzed to

determine the number of inliers existing a certain threshold distance from the fitted

line. The process is repeated a statistically relevant number of times and the model,

or fitted line, which contains the most inliers is kept.

2.6 Sparse Bundle Adjustment

Bundle Adjustment (BA) is typically the final step in any feature-based 3-D recon-

struction algorithm and involves refining the 3-D structure and camera parameters

from the initial estimates through the use of a non-linear minimization algorithm

such as the Levenberg-Marquardt technique. The Sparse Bundle Adjustment (SBA)

techniques developed by Lourakis and Argyros [25, 26] iteratively minimizing the re-

projection error between the observed and predicted images points which is expressed

34



by the sum of the squares of a multitude of nonlinear functions. Specifically, the term

bundle adjustment refers to the simultaneous estimate of multiple camera parameters

including their relative motion and pose, the reconstructed points, and the bundle of

rays emanating from the vertex which converge at the camera center. Inherently, the

equations used to solve this term are sparse due to the lack of integration between

the 3-D points and the cameras. Many reconstructed vertices are only viewed in a

small subset of images and even fewer images are used to calculate the pixel depth.

Therefore, the interaction between the camera parameters and reconstructed vertices

is inherently sparse. The reader will quickly gain an appreciation for the sparseness

of the hessian matrix which must be solved during the Levenberg-Marquardt routine

as seen in Figure 15 for a relatively simplistic model consisting of three cameras and

four points.

Figure 15. Form of normal equations in a hessian matrix.

where matrix elements are defined below [23].

Ui =
∑
i

(
δxij
δΠj

)T
Σ−1
xij

(
δxij
δΠj

)
(30)

Vi =
∑
j

(
δxij
δXj

)T
Σ−1
xij

(
δxij
δXj

)
(31)
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Wij =

(
δxij
δΠj

)T
Σ−1
xij

(
δxij
δXi

)
(32)

εΠj =
∑
i

(
δxij
δΠj

)T
Σ−1
xij
εij (33)

εXj =
∑
i

(
δxij
δXj

)T
Σ−1
xij
εij (34)

∆Pj = Pj − Pj−1 (35)

∆Xi = Xi −Xi−1 (36)

As this model is expanded to larger numbers of vertices and cameras as found in this

research the sparseness of the near-Hessian matrix is evident as seen in Figure 16.

Figure 16. Sparse structure common to 3-D reconstruction matrices[26]. Note non-zero
elements are black.

2.7 Dense Point Cloud Reconstruction

To this point the SfM techniques described above produce a sparse reconstruction

of the scene without prior scene knowledge, use of calibrated cameras, or structured

image collection processes. However, Multi-View Stereo (MVS) algorithms incorpo-

rate camera motion found during the SfM reconstruction process to derive a dense
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reconstruction. There are four approaches to computing a denser point cloud which

include voxel based, deformable polygonal meshes, multiple depth maps, and patch-

based methods [19]. The purpose of this thesis is to investigate the reconstruction

of a complex urban environment with substantial building and vegetative obscura-

tion. Under these conditions voxel and deformable polygonal meshes reconstruction

techniques are extremely limited and multiple depth map techniques become expo-

nentially more complex as the number of input images exceeds three. Therefore, the

patch-based method is ideally suited for reconstruction of urban environments and

scales well with multiple images.

2.7.1 Patch-Based Multi-View Stereo Algorithm.

The patch-based MVS (PMVS) algorithm [11, 19], developed by Furukawa and

Ponce in 2008, produces a dense point cloud consisting of patches, or vertices, de-

scribing the scene based on correspondences between image sets similar to the SfM

methods described above. PMVS leverages knowledge gained from the sparse point

cloud formation to further increase the number of correspondences between images

by constraining the correspondence search to points along similar epipolar lines at-

taining a nearly pixel level reconstruction. This patch-based MVS algorithm consists

of three steps: matching, expanding, and filtering.

Initial feature detection is performed using Harris Corner Detector and Difference

of Gaussian filters in parallel as described in Subsection 2.4.3. As opposed to sequen-

tially searching each images in its entity, each image is subdivided into a rectangular

search grids consisting of 32-by-32 pixel blocks. The top four maxima determined

by each feature detector, either Harris or DoG, are retained for each block. This

step ensures features are sampled evenly across the scene where feature rich areas are

sampled similarly to homogeneous or feature deficient areas to ensure completeness
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of the resulting dense point cloud.

With the image features, denoted by f , in hand, the algorithm collects the features

that lie within two pixels of the corresponding epipolar lines. From these correspon-

dences, 3-D points are triangulated from the feature pairs, (f, f ′). These 3-D points

are considered potential patch centers, p, where the patch is defined by its center

c (p), normal vector n (p), and a reference image R (p) in which p is visible. Furukawa

summed these descriptors in the following equations

c (p)← {Triangulation from f and f’},

n (p)← c (p)O (Ii)

|c (p)O (Ii) |
,

R (p)← Ii

(37)

where O (Ii) is the optical center of the corresponding camera. The set of images in

which the patch is visible is defined as,

V (p)← {I|n (p) ·
−−−−−−→
c (p)O (I)\|

−−−−−−→
c (p)O (I)| > cos (ι)} (38)

where ι is the angle between the patch normal and direction of the patch to the optical

center of the camera and typically defined at π
3
. At this point a set of filtered images

V ∗ (p),

V ∗ (p) = {I|I ∈ V (p) , h (p, I, R (p)) ≤ α} (39)

based on V (p) is computed to ensure each image meets a pairwise photometric dis-

crepancy score with a reference image selected from V (p). The photometric discrep-

ancy score is described below

g (p) =
1

|V ∗ (p) \R (p) |
∑

I∈V ∗(p)\R(p)

h (p, I, R (p)) (40)
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where h (p, I, R (p)) is simply the pairwise photometric discrepancy function between

two images. When the potential matches are filtered to eliminate those with poor

photometric scores and V ∗ (p) is updated g (p) is similarly updated to g∗ (p) with

the substitution V (p) → V ∗ (p). This subset of filtered images ensures anomalous

features such as specular reflections are omitted. V ∗ (p) is optimized by minimizing

g∗ (p) which confines c (p) to remain on the ray passing from its projection on the

visible image to the camera center. In this manner, optimization is constrained to

depth alone. If the patch is found in a predefined number of images, i.e. V ∗ (p) > γ,

the patch creation is deemed successful, and p is recorded in the appropriate image

cell.

During the expansion step, it is desired to construct one patch for each image cell.

Furukawa and Ponce accomplished this by seeding new patches with existing ones

under certain constraints. The first constraint is quite elementary in that if a cell

contains a patch no expansion is necessary. The second constraint concerns depth

discontinuities which exist when an image cell from one camera records a feature

close to the camera but the corresponding camera records a different depth. In such

case, the patch is deemed erroneous and rejected. New patch candidates are created

from the neighboring patch parameters n (p), R (p), and V (p), into n (p′), R (p′), and

V (p′). c (p′) is then determined as the intersection point between the ray passing from

the center of the new image cell through the plane defined by p. Further expansion

steps mirror those described in the previous section in which Equation 39 is used to

determine V ∗ (p) while c (p) and n (p) are optimized.

Patch formation and expansion is typically well behaved, but erroneous patches

will occur. In the final PMVS step, three filters are used to remove these erroneous

patches relying on visibility consistency and regularization. The first filter removes

patches which are not neighbors but are stored within the same cell. The second filter
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also requires visibility consistency where the number of images contained in V ∗ (p)

exceeds γ. Finally the third test enforces regularization. Each patch must have a

proportion of neighbors in identical and adjacent cells in all images. This final filter

can be thought of as requiring each patch to have a nearest neighbor within a certain

distance and those patches without neighbors are isolated and therefore removed.

2.7.2 Clustering Views for Multi-View Stereo.

Agarwal and Furukawa et. al. developed the techniques to rapidly calculate scene

geometry from hundreds and even thousands of images by clustering images into

manageable sized clusters and independently calculating the scene geometry using

the techniques described in Subsection 2.7.1. The technique appropriately named

clustering multi-view stereo (CMVS) [13, 5] uses information from the SfM processes

to cluster images for sequential or parallel processing using MVS techniques. The

CMVS clustering algorithm consists of four steps: merging SfM points, remove re-

dundant images, enforce size constraints, and finally enforce coverage constraints [18].

The first step reduces the number of SfM points to improve processing time of the

remaining steps. An SfM point is randomly selected and merged with neighboring

points by aggregating visibility data over the local neighborhood. The randomly

chosen point and all those merged are removed from the data set. This merging

process continues until the data set is empty. The second step removes redundant

images by testing each image independently and removing it if a coverage constraint

still holds. This culling process is continued until the visibility constraint fails or the

number of images per SfM point is reduced to three. If removal of a particular image

does not violate either of these constraints the image is permanently discarded. The

third step ensures image clusters do not violate a size constraint typically related

to the available memory without regard to coverage. If the cluster is larger than a
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user defined maximum size, the cluster is divided into smaller clusters by weighing

images which have a high MVS contribution. The final step enforces coverage which

was ignored in the previous step. In this step images are added to the clusters to

cover additional SfM points. A series of prioritized steps are constructed which add

specific images to the cluster and record the effectiveness of image addition. Initialized

with the step of highest priority, the step is executed and deemed successful if the

new coverage exceeds 0.7 times the highest score. In such case the image cluster

is updated to include the new image. This process is repeated until the coverage

constraint and cluster size constraints are satisfied [18].

The final product of the SfM and MVS pipelines is demonstrated in Figure 17.

The reconstruction contains 10935 vertices representing over a seven fold increase in

the number of reconstructed 3-D points. The substantial increase in vertices produces

a noticeably denser reconstruction.
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Figure 17. Dense reconstruction of AFIT blocks. Scene reconstructed with thirteen
cameras resulting in 10935 vertices.

The depth information contained within the above reconstruction can be visu-

alized through the optical process, stereopsis, which was previously discussed. The

stereopically derived 3-D effect can be visualized by crossing the eyes until the two

images in Figure 18 merge. Each eye focuses independently on the left and right

images while the brain combines the images to relay the three dimensional object.
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Figure 18. Stereopsis effects reveal the depth information contained within the dense
reconstruction.

2.8 Case Study: Reconstruction of the Ohio State University Stadium

The Ohio State University stadium was reconstructed using fifty images extracted

from the Columbus Large Image Format (CLIF) II October 2007 data set provided

by AFRL/RY. This data set presents a unique opportunity to compare the dense

reconstruction to LIDAR data collected with a Leica ALS50 digital LIDAR system

with average post spacing of seven feet. The LIDAR data was sourced from the

Ohio Geographically Reference Information Program [10]. Figure 19 represents the

capability of the Bundler/PMVS workflow to generate a high quality point cloud

representation of the target area in direct comparison to the LIDAR data.
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(a) LIDAR (b) Image Derived

Figure 19. LIDAR derived point cloud compared to an image derived reconstruction.

Figure 19 highlights several strengths and weaknesses of the image derived and

LIDAR 3-D reconstructions. First LIDAR presents very little noise in the vertical

direction; however, since ground sampling is equally distributed, structure edges are

left unresolved. This significantly hinders the reconstruction of vertical structures

with ground dimensions less than the LIDAR sampling distance, typically 5 meters

from an altitude of 10000 feet. On the other hand, image derived reconstructions

derive vertices from intensity gradients of which edges are primary contributors. For

instance, image derived reconstruction can reconstruct vertices on vertical walls while

retaining color information where LIDAR cannot. Finally since image features are

required to relate images, image derived reconstructions fail in areas of homogeneous

and specular surfaces where LIDAR continues to provide a return. When noting the

depth accuracy inherent to LIDAR and spatial x and y accuracy of image reconstruc-

tion, it is easily imagined fusion of LIDAR and image derived reconstructions will be

a ripe area for further research.

2.9 Reconstruction Ambiguity

The mathematical techniques discussed above result in projective reconstruction

yet other variations exist resulting in a degree of reconstruction ambiguity. Each re-
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construction, projective, affine, euclidean, and metric, is distinguished by the gradual

insertion of in-situ knowledge into the final solution and therefore represent improved

reconstructions of the scene. Projective reconstruction methods, denoted as Pip in

the mathematics above, serve as the most basic but generalized method which require

no foreknowledge of the original scene. These reconstructions are characterized by

the failure to preserve parallel lines and metric distances which result in significant

skewing of the original 3-D scene.

Affine reconstructions represent the first upgrade in which parallel lines and right

angles are preserved. Typically when imaging man-made structures one deductively

infers basic geometric shapes such as rectangles and cylinders. With this knowledge

it is possible to compute the vanishing point defined as the point in which parallel

lines in a projective reconstruction appear to converge. This principle is clearly

seen in the convergence of distant railroad tracks whereas in reality the tracks are

parallel. Computation of the vanishing point corrects the projective reconstruction,

but relative distances between 3-D points is not maintained. In other words parallel

lines are preserved but each axis is reconstructed to different scale factors.

Euclidean reconstructions offer substantial improvements to the projective and

affine reconstructions, yet require autocalibration steps or the foreknowledge of the

camera calibration matrix to provide partially or fully calibrated camera frames. The

visual renditions of sample reconstructions seen throughout this effort are of euclidean

nature unless otherwise noted, and all employed basic autocalibration measures. This

step is frequently skipped since the Euclidean reconstruction can be determined from

the perspective reconstruction if and only if knowledge of the camera calibration

matrix, K, is known. However, Ma Yi, et.al. have shown by using the absolute

quadric constraint and assuming K is constant between all images, a final euclidean

reconstruction can be achieved [28].
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Finally the ultimate goal of true metric reconstructions require knowledge of the

camera’s true IOPs and EOPs. Thus far the inclusion of the camera’s IOPs and

EOPs has been omitted from the SfM and MVS processes, and only relative R and

T motions included. This was done to provide a generalized reconstruction problem

applicable to all data sets. Typically the camera’s EOPs are transmitted in the form

of yaw, pitch, and roll of the sensor as well as the latitude, longitude, and altitude

of the camera system. Simple conversions relate this real world information to the R

and T components necessary to derive an absolute world coordinate system model in

which point to point distances and model translation and rotations are all true to a

real world coordinate system.

2.10 Autocalibration

A final theoretical construct which remains to be discussed is autocalibration.

Autocalibration techniques provide the homography matrix required to upgrade the

projective reconstructions to euclidean without complete knowledge of the camera’s

IOPs/EOPs. The following steps are outlined in greater detail by Ma [28], but are

surmised here.

The projective reconstruction Xp is related to the euclidean reconstruction X3 by

a homography matrix through, Xp ∼ HXe where

H =

 K1 0

−vTK1 1

 (41)

K1 is the camera calibration matrix for the first camera, and vT represents the solution

to the linear constraints seen below. At this point it is important to distinguish Ri

and Ti from R and T . Whereas the latter represent the rotation and translation with

respect to the rigid body motion, Ri and Ti denote the euclidean motion from the first
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camera frame. The camera projection matrices are thereby related by Equation 42.

ΠipH ∼ Πie = [KiRi, KiTi] (42)

Furthermore, the homography matrix is restricted to the left 3 × 3 block since the

far right column fails to constrain H. Ri may be eliminated by multiplication of KT
1

resulting in the absolute quadric constraint center matrix seen below.

ΠipQΠT
ip ∼ S−1

i (43)

where Si = K−Ti K−1
i and Q is defined as

Q =

 K1K
T
1 −K1K

T
1 v

−vTK1K
T
1 vTK1K

T
1 v

 ∈ <4×4 (44)

Fortunately this problem is greatly simplified under three assumptions: the optical

axis is orthogonal to and intersects the center of the imaging plane and the imaging

pixels are square. This assumptions lead to the adaption of Equation 43 to

Πip



a1 0 0 a2

0 a1 0 a3

0 0 1 a4

a2 a3 a4 a5


ΠT
ip ∼


f 2
i 0 0

0 f 2
i 0

0 0 1

 (45)

resulting the following constraints where πji represent the rows (j) of the camera
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projection matrix Π for each camera (i).

π1T
i Qπ1

i = π2T
i Qπ2

i

π1T
i Qπ2

i = 0

π1T
i Qπ3

i = 0

π2T
i Qπ3

i = 0

(46)

When Q is in the form of Equation 45 only three camera frames are required and the

five unknowns are recovered linearly. Finally K and v are extracted from Q by

K1 =


√
a1 0 0

0
√
a1 0

0 0 1

 (47)

v = −
[
a2

a1

,
a3

a1

, a4

]T
(48)

which finalizes the unknowns required for the H euclidean upgrade.

2.11 Summary

Structure from Motion provides the tools necessary to reconstruct accurate 3-D

scene reconstruction from 2-D images. At the heart of the process is the fundamental

matrix which defines x′TFx = 0 and ultimately, with enough correspondences, depth

information can be derived from the image correspondences alone. From the image

correspondences, a fundamental matrix can be derived which leads to the camera

projection matrices and finally the initial 3-D coordinates. Sparse bundle adjustment

techniques simultaneously refine the 3-D points and camera centers resulting in a

sparse point cloud. Further processing of the data transforms the sparse point cloud
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to a dense point cloud through a secondary search of additional correspondences by

limiting the search over a localized region corresponding to the epipolar lines. However

with image correspondences alone, the techniques above are limited to a projective

reconstruction. Augmenting the problem with in-situ knowledge such as the camera

calibration matrix, K, rotation and translation vectors between cameras, R and T ,

a direct substitution can be made for the projection matrices and a final Euclidean

reconstruction achieved.
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III. Methodology

3.1 Chapter Overview

This chapter discusses the software, analytical tools, and test methodology em-

ployed to analyze the effects of various collection parameters on the final 3-D re-

construction. The reconstruction techniques discussed in the previous chapter have

the ability to accurately reconstruct a diverse set of structures from simple objects

to elaborate urban environments. However, past researchers utilized data sets in-

cluding thousands of images from highly diversified viewing geometries or laboratory

environments where all scene angles can be orchestrated in minute detail. Both

these scenarios depict rich collection geometries which provide an abundance of in-

formation to reconstruct accurate dense point clouds but such collections may be

unattainable in certain situations. Modern intelligence gathering scenarios often pro-

hibit the ability to collect data sets of this nature since operational considerations

restrict the optimal placement of camera centers and forbid multiple overflights or

persistent surveillance. In essence, the collector is limited to a single pass without

opportunity of reengagement. Under these qualifying conditions, thorough knowledge

of the collection geometry effects on the final reconstruction accuracy is required to

ensure a highly accurate and complete reconstruction can be derived from a minima

of data. Unfortunately, investigative efforts examining 3-D reconstructions under the

restrictions mentioned above are found wanting.

For these reasons, three parameters, number of cameras, convergence angle, and

variable viewing geometries were investigated in detail using both a simulated MAT-

LAB environment and a 3-D rendering software capable of generating images of real

world environments. First, the MATLAB environment affords the ability to investi-

gate the SfM/MVS algorithm’s ability to reconstruct a simple shape and provide a
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high fidelity trade-off analysis examining the dependence of reconstruction error on

the number of camera frames and convergence angles. Secondly, Blender, a 3-D com-

puter graphics software package, enabled the capture of aerial images of a synthetic

urban environment modeled after Sadr City, Iraq to simulate operationally realistic

collection events. Multiple image data sets were acquired simulating three character-

istic reconnaissance flight geometries of an unmanned aerial vehicle including direct

linear passes, circular orbits, and finally a hybrid s-curve path.

3.2 Phase One: Fundamental Reconstruction Simulations

The SfM/MVS algorithms were implemented within the MATLAB operating en-

vironment for dual purposes. First, the code offers a demonstrative capability to

highlight the peculiarities of 3-D scene reconstruction when certain information is

withheld. Additionally, the code provides an open source opportunity to manipulate

and edit the algorithm which is an attribute not currently available in the academic

software packages, Bundler and CMVS/PMVS2, which provide the 3-D reconstruc-

tions for the aerial profile data sets. Secondly and serving as the primary purpose,

the code allows a precise investigation of the effects of limited convergence angles and

number of camera frames on reconstruction accuracy. To support this reconstruction

effort, a simple nine point geometric shape was created as seen in Figure 20. It is

important to note, the elementary wireframe structure seen in the figure is defined by

nine points only. The connecting lines have been drawn in for visualization purposes

only and not used by the SfM/MVS algorithms. This arrangement allows for the

precise positioning of cameras and full control of translation and rotation. Further-

more, multiple cameras may be added to simulate the effects of numerous viewing

geometries and camera poses. This level of control is not without limitation, two of

which demand attention.
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Figure 20. Basic geometric shape for MATLAB reconstruction algorithms. Note lack
of opaque surfaces allows for viewing of all features.

3.2.1 Limitations.

The first limitation to this methodology is the inability to occlude points. In solid

objects, irradiance from hidden points on the farside of the structure would be oc-

cluded from the camera as the rays would be denied a direct transmission path to the

camera. Additionally, even if reflective surfaces were introduced, the reflection itself

would be identified as a unique feature separate from its originating source. Since

the algorithm contains knowledge of all points unhindered by occlusions, extremely

accurate reconstructions may be recovered; however, it must be noted this situation

exists within the computer environment alone as real world occlusions will degrade

reconstruction accuracy considerably. Nevertheless, this limitation allows for verifica-

tion of the reconstruction code and reveals general trends in the relationship between

the collection parameters and reconstruction accuracy. A second limitation to this

method is knowledge of perfect correspondences. Within the code, the nine points

are recorded as features and directly matched to one another to form the required

correspondences. In other words, this limitation allows for the algorithm to have

complete knowledge of all points at all times. A side effect of the second limitation is
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the false apparency of resolution invariance. As the resolution of the images increases

the raw image data available for reconstruction increases and therefore reconstruc-

tion accuracy is affected. However with the knowledge of perfect correspondences,

the reconstruction accuracy is unaffected by the image resolution. For instance, the

reconstructions were carried out with multiple image resolutions ranging from 250,000

to 25,000,000 pixels per image with negligible effect on accuracy.

Real world reconstruction algorithms require feature extraction and matching from

images in which occlusions, variable resolution, and erroneous correspondences result.

In such case, the extraction and matching processes may fail to identify and match

all points amplifying the sparse nature of the reconstruction matrices not captured

in this fundamental reconstruction simulation.

3.2.2 Procedure.

The effects of convergence angle and number of camera frames on reconstruction

accuracy were examined with the MATLAB simulation code. The nine point structure

was imaged by translating a camera along a preprogrammed track while automatically

rotating each camera to ensure the structure remained in the center of each image.

At each point, the 2-D location of the nine points was recorded, thereby producing

the required correspondences, x and x′. The convergence angle was defined as the

angle formed by the rays originating from the center of the structure to the two most

extreme camera locations as seen in Figure 21. Data sets defined by convergence

angles from 1◦ to 100◦ in 1◦ increments were recorded with two cameras. Furthermore,

at each angle additional camera frames were acquired at equal intervals along a line

formed by two extreme camera frames beginning with two and iteratively increasing

to twenty. This provides a high fidelity data set consisting of 1900 unique data sets

containing all permutations of convergence angles and number of camera frames.
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Figure 21. Camera pose in relationship to the structure with three cameras at an
angular diversity of 30◦. Additional cameras were added at equally spaced intervals
between the two cameras represented in this figure by cameras 1 and 3. Furthermore,
angular diversity was investigated by adjusting the separation between the two end
cameras.

For each data set, the location of the nine points were recorded and blurred with

a Gaussian function with sigma equal to 0.0001. Empirical tests showed this value of

sigma provided consistent results whereas values exceeding 0.001 failed to reconstruct.

The blurred points were then supplied to the SfM/MVS reconstruction algorithms for

analysis. 100 iterations were performed for each dataset to mitigate variance inherent

in any non-linear optimization problem. The reconstruction algorithms implemented

followed the techniques described in Chapter II while guidance and coding techniques

were adopted from author and professor Jana Kosecka of George Mason University

who supplied sample code via her website which accompanies the text, An Invitation

to 3D Vision [12, 28].

The resulting reconstructions were analyzed for accuracy based on the root mean

square distance error (RMSDE) calculated between the original and reconstructed
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points, xi and xr respectively, as seen below

RMSDE =

√
(xi − xr)2 + (yi − yr)2 + (zi − zr)2

n
(49)

where n is the total number of vertices.

3.3 Phase Two: Airborne Collection Profiles

The use of a synthetic 3-D rendering software permited investigation of reconstruc-

tion accuracy from images derived by airborne collection platforms without risk to

personnel or equipment and allowed for radical flight profiles. This investigation turns

to the heart of this effort; determining the optimum flight characteristics required to

maximize reconstruction accuracy and completeness. Pursuant to representative in-

telligence requirements, a specific target within a cluttered scene was selected for

target characterization and reconstruction.

The synthetic scene improves upon the MATLAB simulation due to the realistic

nature of the environment by introducing occlusions and requiring the algorithms to

locate and associate feature points between images. As noted earlier, Blender [1], an

open source 3-D computer graphics rendering package, provided the images required

for the reconstruction task. Multiple aerial profiles were collected including linear,

circular, and a hybrid s-curve approach. Furthermore, the camera orientation to the

aircraft varied from dynamic (agile) mounts possessing the ability to track specific

targets to static mounts whose orientation to the airframe is fixed. Details associated

to each collection profile and the Blender setup are provided below, but first a brief

discussion on the limitations associated with the synthetic environment.
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3.3.1 Limitations.

A major limitation to the synthetic environment was the lack of building textures

and moving objects such as windblown trees and vehicles. Although Blender allows

for both, the necessary texture and motion data files were unavailable at the time

of this investigation. Preliminary use of the resulting rendered images revealed the

background texture, building edges, and shadowing effects provided sufficient image

detail to extract adequate image features and correspondences to produce quality

reconstructions. The lack of moving objects within the scene limits the realism;

however, their absence only has limited effects on the final reconstruction. As one

may note reconstruction vertices are ultimately sourced from scene correspondences,

and features derived from moving targets are rejected by feature matching techniques

since similar features often cannot be found in subsequent images due to the epipolar

constraints used for reconstruction.

3.3.2 Procedures.

The three collection profiles to be examined include linear, circular, and s-curve

all of which are visualized in Figure 22. Each pass is identified by the look angle,

Θ, measured between the point of closest approach and nadir and ranges from −60◦

(nadir) to 60◦ in 15◦ increments. It is important to understand the difference between

the convergence angle described in Figure 3 and the aerial profile look angle seen

below.
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(a) Linear Flight Profiles (b) Circular Flight Profiles (c) S-Curve Flight Profiles

Figure 22. Visual depiction of aerial flight profiles. In total, three data sets were
collected each of the above with a dynamic camera, and a fourth involving a static
collection along the linear flight profiles.

Figure 23. Aerial profile descriptor (look) angles ranging from −60◦ to 60◦ in 15◦

increments. Negative angles (not pictured) are symmetric.

Linear flight paths are subdivided into either east-west (D designation) or north-

south (H designation) orientation in a cross hatch pattern with the north-south di-

rection indicated by the vertical lines in Figure 22(a). Each pass was completed twice

with two different camera properties, dynamic and static. Dynamic camera proper-

ties indicate the camera’s ability to skew to or track ground targets whereas a static

camera’s orientation to the aircraft is fixed. In total, twenty eight linear passes were

completed encompassing all permutations of pass direction and camera slewing abil-
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ity. In addition to the single linear passes, multiple linear static passes were combined

to determine the level of improvement against the single passes.

Figure 24. Permutations of linear staticcross passes. The shaded areas
represents those linear passes which were combined. For example, along
the top row linear static 45D1000 was combined with linear static -45H1000,
linear static -15H1000, linear static 15H1000, and linear static 45H1000. All passes
at look angles in excess of ±45◦ were omitted due to poor reconstruction performance.

The circular flight paths by their nature will always maintain the target in the

center of the frame regardless of whether or not the camera is static or dynamic.

However for this effort, all circular flight paths will be dynamically controlled. 100

images were acquired for each circular orbit as opposed to the 50 generated from the

other passes. This is to ensure complete coverage of target as the dataset can be

subsampled at a later date for consistency with other collection profiles.

The s-curve flight paths will be dynamically controlled and follow a sinusoidal

pattern passing directly nadir to the target at the closest approach.

Nomenclature for the data sets follows the conventions seen in Table 1. Linear

passes transecting the synthetic environment in the east-west direction are designated
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linear static(dynamic) XXD1000 whereas north-south passes follow the nomencla-

ture linear static(dynamic) XXH1000. Dynamically controlled and static cameras

are differentiated from one another by the second parameter within the filename.

Finally, combined passes are referred to as linear staticcross XXDXXH and those

combined passes limited to only images overlapping the target are referred to as

linear staticcrosslimited XXDXXH

Table 1. Nomenclature for all flight profiles.

Flight Profile Nomenclature Images Used
Linear(Dynamic) linear dynamic XXD1000 50

linear dynamic XXH1000 50
Linear(Static) linear static XXD1000 50

linear static XXH1000 50
Linear(StaticCross) linear staticcross XXDXXH 100

Linear(StaticCrossLimit) linear staticcrosslimited XXDXXH variable
Circular circular dynamic XXD1000 100
S − Curve scurve dynamic XXD1000 50

3.3.3 Blender.

Blender 2.5 provided the necessary images for the reconstruction effort[1]. The

open source software allows users to design and navigate through cityscapes with a

variety of lighting, shadowing, and surface textures. As seen in Figure 25, a digital

reconstruction of Sadr City, Iraq provided by AFRL/RY served as the urban landscape

suitable for this environment. The white buildings reflect the lack of building texture.
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Figure 25. Sadr City synthetic environment.

Various flight paths were constructed within the Blender environment which rep-

resented the various aerial profiles noted in the previous section. All flight paths

maintained a constant altitude of 1 unit corresponding to a relative altitude of roughly

2000 feet above the target based on the Sadr City scene dimensions and scaling fac-

tors. Images were rendered at a resolution of 1000×1000 as these dimensions balanced

both the time required for image acquisition and number of features and therefore

vertices in the final reconstruction. Furthermore, a camera focal length of 50 mm was

used to ensure sufficient structures surrounding the target existed within the image

frame. Tests with focal lengths in excess of 75 mm yielded poor reconstructions as the

target consumed too much of the individual frames, thereby limiting the number of

correspondences since the homogeneous building facets lacked image features. Solar

illumination and shadowing was achieved by a uniform irradiance source placed at am

angle of 45◦ to the north resulting in the observed southerly facing shadows. LuxRen-

der, a physical based renderer using unbiased ray tracing techniques simulated the
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path of individual light rays as they propagated through the scene [7]. Images were

rendered via a metropolis unbiased rendering algorithm which terminated when a to-

tal of 15 samples were collected by each pixel. A subset of eight images representing

the entire 50 image data set of a linear dynamic pass is seen in Figure 26.

Figure 26. Eight image subset of aerial target collection representing a
linear dynamic -15D1000 pass. Centered within each image is the target area consisting
of a three building structure.

In Figure 26, the multi-building compound selected for reconstruction is preva-

lent. The structure exhibits several characteristics quintessential for investigating the

reconstruction accuracy and completeness based on flight profiles. First, its loca-

tion within the center of the city allows for low viewing angles while urban terrain

and buildings still remain in each image. Selection of an edge target would severely

limit the number of reconstruction vertices and only those features around the tar-

get would be selected for reconstruction. With numerous structures, and therefore

features within each image, the algorithm must effectively manage clutter surround-

ing the intended target, and those correspondences originating from scene clutter

allow for additional refinement of the fundamental matrix and minimization of the
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non-linear bundle adjustment solutions. Second, and in seemingly contradiction to

the first characteristic, the compound is relatively unobstructed when viewed from

the west and south while possible occlusions exist when viewed from the opposing

directions. Although the compound is unobstructed from the west and south, the

ground surface and road will provide distinct features and correspondences. Finally,

all buildings within the compound and surrounding area represent a variety of equally

distributed heights normalized to the tallest structure. This final characteristic is of

immense importance as multiple building heights provides sufficient basis to judge

the algorithms accuracy to extract depth information.

3.4 Data Processing

Multiple software tools exist which offer an automated process to extract features,

relate images, and provide a 3-D reconstruction. For this effort the software package

Bundler in conjunction with PMVS2 and CMVS were used. All software packages

provide the necessary binary and executable files necessary for correct installation

which are available for download from the University of Washington’s Computer

Science and Engineering Photo Tourism website [2, 11, 5].

The data workflow from scene generation to dense point cloud is seen in Figure 27

to provide guidance for the remainder of this section.
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Figure 27. Basic data workflow constituting the major dense reconstruction steps.
Shaded cells represent data inputs and products.

3.4.1 Bundler.

All Blender derived images were processed with the SfM techniques discussed in

Chapter II using the Perl based software package, Bundler. Bundler, developed by

Noah Snavely, serves as the core backbone to Microsoft’s Photosynth image processing

platform and determines the basic sparse structure and camera parameters from un-

ordered image sequences [2, 9]. Bundler consists of four core subfunctions: extraction

of focal length from image metadata, image feature extraction using SIFT, feature

matching using Approximate Nearest Neighbor, and finally, application of the SfM
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algorithm with point and camera refinement through the minimization technique,

Sparse Bundle Adjustment.

Extraction of the image focal length aids immeasurably in initializing the funda-

mental matrix by providing a partially calibrated camera view. It has been shown

calibrated cameras produce Euclidean reconstructions when both the rotation and

translation between cameras are known or derived from the SfM process [23, 28].

Therefore seeding the fundamental matrix calculation with partially calibrated im-

ages greatly enhances the solution’s accuracy. Once extracted, the optical focal length

must be converted from metric units, typically mm, to pixels by

focal lengthpixels = image widthpixels ×
(

focal lengthmm
sensor widthmm

)
(50)

where image and sensor widths are measured along the major axis of the image, and

the focal length measured in either pixels or millimeters as noted. For example, base

images for the AFIT block and AFIT campus reconstruction examples were acquired

with a 50 mm lens mounted on a Canon 40D sensor body. The Canon 40D contains

an APS-C CMOS sensor array measuring 22.2×14.8 mm capable of recording images

with a maximum resolution of 3888 × 2592 pixels. Under these conditions, the cor-

responding focal length is 8756.76 pixels. Note the individual APS-C CMOS sensors

are square, and therefore, usage of the width or height produce identical pixel focal

lengths. All images acquired through Blender maintain a focal pixel length equal to

1000 corresponding to the dimensions of the image. For the remainder of this effort,

all focal length measurements will be conveyed in pixel units not metric units which

typically define optical systems unless explicitly stated otherwise. This distinction

allows for the inclusion of sensor characteristics which reflect the actual conversion

from the real world to digital coordinates and are required for true Euclidean recon-

structions.
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Secondly, the images are related to one another through extraction of feature

points via the SIFT algorithm. However, Bundler only uses SIFT to extract the

keypoint descriptors from each image and relies on the Approximate Nearest Neighbor

(ANN) to register image features. ANN, developed by David Mount, constructs a

kd-tree from the keypoint descriptors and determines nearest neighbors based on the

euclidean distance [31]. The program uses the SIFT generated keypoint descriptors

from the first image and recursively navigates through the kd-tree minimizing the

Euclidean distance for a keypoint description from a second image. A final survey

of data points in neighboring cells verifies the selected point as a possible match

since closer points in neighboring cells may exist. The resulting data point with the

minimum Euclidean distance are matched and designed as a matched keypoint.

The final function performed by Bundler is application of the SfM algorithm. In

this step, Bundler extracts matched keypoints and iteratively solves for the funda-

mental matrix using RANSAC to derive the relative camera pose assuming the first

camera is positioned at the origin. Once a solution for the camera parameters has

been determined, the 3-D points are triangulated between sequential images. Both

camera parameters and sparse vertices are exported in the bundle.out file.

3.4.2 CMVS/PMVS2.

The CMVS/PMVS2 software packages were used in conjunction with Bundler to

derive a dense point cloud [5, 11]. As stated in Subsection 2.7.2, CMVS conditions the

image sets by removing redundant images in which the small baseline between cameras

degrades reconstruction accuracy and clusters neighboring images for use on multi-

core systems. The image clusters produced by CMVS with input from GenOption,

a program initializing CMVS parameters such as those mentioned in Table 2, are

passed to PMVS through a series of option-####.txt files. These files contain the
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necessary clustering and PMVS commands for the dense point cloud reconstruction.

Depending on the clustering output of CMVS, multiple option-000(...).txt.ply

files may exist. These additional files serve as processing instructions suitable for

parallel computing on multicore computers. Furthermore, CMVS creates a vis.dat

file which contains the images which PMVS uses as well as camera contour files

containing the necessary pointing and location information for each camera. The

contour files are suitably named, ####.txt where the # signs represent the camera

number (0− n), and are derived from the bundle.out file. With these files, PMVS

reconstructs a dense point cloud following the same methodology as described in

Subsection 2.7.1 by constraining the search for additional correspondences within

two pixels of the epipolar lines.

CMVS/PMVS2 allows for the selection of several thresholds and parameters when

reconstructing the dense point cloud. The variable, value used, and meaning are

found in Table 2. Preliminary testing showed processing time increased by a factor

of four when the images were retained at full size with level = 0, whereas level = 1

reconstructed a similar number of points without a significant loss of data points.
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Table 2. Selection parameters used for CMVS/PMVS2. All reconstructions used the
same values. A final parameter denoting the number of available processors was hard
coded to 8.

Variable Value Used Nomenclature
clustersize 30 Denotes the maximum number of images per cluster.

This variable is largely depended on the available com-
puter memory.

level 1 level = 0 denotes the image is used with full resolution
whereas an incremental increase in the level effectively
halves the images. For instance, level = 1 images are
halved to one quarter of the original pixels and level = 2
only a sixteenth of the images are used.

csize 2 Controls the reconstruction density by attempting to re-
construct one path in every csize× csize pixel region in
the target images.

threshold 0.9 Photometric consistency measure. Only patches passing
this threshold will be retained.

3.5 Data Analysis

It is imperative to quantify reconstruction accuracy which is defined as the level

to which the reconstruction resembles the original target. Several measures will be

used including root mean square distance error between selected data reference points

and completeness or the degree to which all surfaces were reconstructed.

3.5.1 Root Mean Square Distance Error.

Since the Sadr City synthetic environment provides the structure geometry, the

exact dimensions and relationships between the various structures is known. The

sadrcity.obj file provides the vertex and facet information required for each build-

ing. As seen in Figure 28, twenty six specific vertices were recorded and stored as

reference points. These points serve as the ground truth by which the reconstruction

will be measured. Four buildings within the target area were selected for RMSDE
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analysis. The selection of these particular buildings fulfilled several functions. First,

the distribution of the vertices in relationship to the surrounding structure allows for

occlusion of several vertices at oblique viewing directions especially those between the

buildings. Secondly, the height distribution of the vertices is equally spaced within

the z-direction which provides multiple opportunities to determine the SfM/MVS

algorithm’s ability to exact accurate depth.

Figure 28. Twenty six identified reference markers within ground truth.

Specific vertices within the point cloud reconstructions representing these twenty

six points were selected based on their proximity to the real point. Since particular

viewing geometries never image one side of the building it is logical to assume no

vertex will be reconstructed at that point. Therefore, the closest reconstructed point

must be selected to best represent the ground truth vertex. Once all twenty six

reconstructed vertices are extracted, the RMSDE between the points was recorded.
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3.5.2 Localized Point Density.

To measure the completeness of the reconstruction, the localized point density of

the vertices within the target areas was determined. Completeness is measured by the

number of vertices within a cube encompassing the entire target area. This measure

provides several sources of information. First, the number of vertices within the target

area directly relates to the RMSDE as additional vertices improve the selection of the

correct vertex representing one of the reference points. Secondly as the number of

vertices increase, a corresponding increase in structure detail is observed, further

aiding in the selection of the comparison points and representation to the original

structure.

3.6 Data Processing Computer

The processes described above require immense computational capabilities, and

reconstruction results are highly dependent on the specific computer. For instance

when the reconstruction workflow was performed on identical datasets, the number

of reconstructed points differentiated by roughly 10% depending on the computer

and in particular the amount of available RAM. Recognizing this ambiguity between

computers, a single computer was used to perform all reconstructions. The computer

used employed two quad core Intel R© Xenon R© X5667 CPUs operating at 3.07 Mhz

each supported by 12.0 GB of available RAM.

3.7 Chapter Summary

Quantifying the effects of viewing geometry on the subsequent 3-D reconstruc-

tion accuracy is dependent of numerous parameters and requires a multi-phase effort.

In the first phase, a MATLAB algorithm with the ability to reconstruct a simple

geometric shape provided the basic analytical framework to support in-depth study
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into the effects various reconstruction parameters on the final reconstruction. By

providing the user full control of the camera pose, calibration, number of camera

frames supplied to the algorithm, geometric shape to be constructed, and finally a

qualitative comparison to the original structure, the investigator was able to interro-

gate the algorithm and environmental effects on the reconstruction with ease. This

arrangement offered unparalleled access to the reconstruction process and provided

the necessary insight into the effects of convergence angles and number of frames

on the final reconstruction. Within the second phase, a synthetic 3-D environment

was used to generate images simulating a variety of aerial collection profiles similar

to typical reconnaissance flight profiles such as linear one pass flybys and circular

orbits each equipped with static and agile cameras. In addition, a hybrid s-curve

profile exhibiting characteristics of both the linear and circular profiles was explored

to fully determine the optimum collection geometry to support operational scenarios.

This secondary effort supports the first by introducing real world effects such as vari-

able illumination loading, obscured points, and bridges the gap between laboratory

algorithms and real-world operations.

70



IV. Results

4.1 Chapter Overview

This chapter covers the results of both the MATLAB simulation code as well as

the Blender and CMVS/PMVS2 derived point cloud reconstructions. The MATLAB

simulation code successfully reconstructed the nine point structure under a variety

of conditions including limited camera frames and convergence angles. Reconstruc-

tions from the Sadr City synthetic images were much more diverse; whereas most

reconstructions clearly represented the scene, several produced erroneous results.

4.2 Simulation

Projective reconstruction of the nine point structure was successfully achieved for

all convergence angles, 1◦ to 100◦ in 1◦ increments, and number of cameras which

ranged from 2 to 20. Without foreknowledge of the camera calibration matrix, K,

or a-priori scene knowledge, the results were limited to a projective reconstruction

as seen in Figure 29. As expected the general structure of the object was retained

however significant distortion exists.

Figure 29. Projective Reconstruction.
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In Figure 30, three vanishing points were computed using the intersection points

between the vectors,
−→
12 and

−→
56,
−→
14 and

−→
23, and finally

−→
15 and

−→
26. The affine upgrade

correctly projects the image preserving the basic geometric shape. However, the

reconstruction is still limited to a non-Euclidean reconstruction exemplified by the

rectangular cuboid shape as opposed to the true cubic structure.

Figure 30. Affine Reconstruction.

The final Euclidean reconstruction requires the camera calibration matrix to nor-

malize the projection matrices, Π1e = [K, 0] and Π2e = [KR,KT ]. The reconstruction

was initialized by computing the fundamental matrix from the two extreme frames.

Next the remaining images are iteratively added using a rank based factorization to

complete the multi-view reconstruction seen in Figure 29. As opposed to using a

stratified reconstruction process where the Euclidean reconstruction would be cre-

ated in a projective, affine, Euclidean sequence, a direct perspective to Euclidean

upgrade was employed. To complete this upgrade, the camera calibration matrix

must be determined directly from the images provided. K was determined by ini-

tially guessing the focal length of the camera, assuming a pixel skew equivalent to

zero, and calculating the center of the image as the geometric center of the image.
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These values were then used as the baseline to refine the focal length using absolute

quadric constraints. Once the focal length was determined, the projective structure

was upgraded to Euclidean as seen in Figure 31.

Figure 31. Euclidean Reconstruction.

The Euclidean reconstruction seen in the above figure was reconstructed using five

camera frames and a convergence angle of 30◦. The reconstruction has a RMSDE on

the order of 3 × 10−14 thereby providing a realistic Euclidean representation of the

true structure.

The above process was repeated at all convergence angles from 1◦ to 100◦ in

1◦ increments while varying the number of cameras from 2 to 20. When only 2

cameras were used, the reconstruction algorithm frequently failed due to inconsistent

computational results. Several reconstructions at varying test parameters are shown

below.
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(a) 3 Cameras at 3◦ convergence (b) 3 Cameras at 6◦ convergence

(c) 7 Cameras at 30◦ convergence (d) 20 Cameras at 100◦ convergence

Figure 32. Reconstruction of nine point structure at a variety of parameters. Note the
dramatic improvement at angles greater than 5◦.

These reconstructions highlight several peculiarities with this specific reconstruc-

tion algorithm. First, note the substantial improvement in accuracy at convergence

angles exceeding 5◦. Furthermore, the apparent accuracy improved only slightly de-

spite the additional camera frames and wider convergence angles. Finally, with an

initial focal length estimate of 400, the focal length was resolved to 497.8800, 498.4969,

500.0067, and 500.0291 in each of the four scenarios above while the actual focal length

was 500.
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4.3 Aerial Collections

The Blender derived image sets represent each of the various flight profiles resulted

in 44 unique collection perspectives and 2500 images. The intent of this chapter is to

demonstrate the SfM/MVS workflow’s ability to reconstruction a complex urban scene

at a variety of flight profiles detailed in the previous chapter. Therefore discussion to

each is limited to only immediate observations, whereas detailed analysis concerning

each reconstruction occurs in the following chapter. Example point clouds from the

six flight profile categories are provided, but all may be found in the Appendix. For

each flight profile both the sparse and dense point clouds are depicted at varying

perspectives to orient the reader to each reconstruction. In the upper left corner, a

sparse point cloud is included which also contains the SfM determined camera centers

which are denoted by the red and green alternating pixels. The yellow pixels show the

pose for each camera center. The upper right corner contains the dense point cloud

reconstruction from a top-down perspective to observe the x-y spatial reconstruction.

Finally, the dense point cloud is again seen as the final perspective which highlights

the vertical reconstruction along the z-axis.

In general, the results varied from extraordinarily dense and representative of the

target area to failed reconstructions where the scene structure is unidentifiable. Those

profiles possessing both a variety in target magnification and diverse viewing angles

provided rich datasets particularly suited to well behaved reconstructions.
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4.3.1 Linear Flight Profile - Dynamic, linear dynamic XXX.

In total, 18 flight profiles were recorded at a variety of look angles from −60◦

to 60◦ in 15◦ increments. Initial inspection revealed the profile’s ability to provide

a robust representation of the target area independent of viewing geometry from

nadir extending to 45◦. The combination of angular diversity and variable target

magnification supplied the reconstruction algorithm with a wide variety of data points

Only linear dynamic 60D1000 failed to provide a reconstruction characteristic of the

original target area.

(a) Sparse Point Cloud (b) Dense Point Cloud

(c) Dense Point Cloud - Ground Plane

Figure 33. linear dynamic 0D1000. The yellow, red, and green pixels contained within
the sparse point cloud (a) represent the camera centers as determined by Bundler.
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4.3.2 Linear Flight Profile - Static, linear static XXX.

Linear static flight profiles provided a stark contrast to the dynamic reconstruc-

tions seen in Figure 33. Of the 18 total flight profiles, only 13 provided recognizable

reconstructions with all poor reconstructions occurring at nadir or near nadir angles.

The relative homogeneous data sets lacked the angular and range diversity required

to compute the fundamental matrix.

(a) Sparse Point Cloud (b) Dense Point Cloud

(c) Dense Point Cloud - Ground Plane

Figure 34. linear static -15D1000. The yellow, red, and green pixels contained within
the sparse point cloud (a) represent the camera centers as determined by Bundler.
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4.3.3 Linear Flight Profile - Multiple Profiles,

linear staticcross XXDXXH.

When the linear static profiles were combined with orthogonal passes, a significant

improvement was observed in reconstruction accuracy. However, 6 of the total 25

combined linear static profiles failed, roughly the same percentage as the linear static

profiles. Nevertheless, successful reconstructions exhibited improvement in accuracy

due to the increased viewing angles covering additional areas of the target.

(a) Sparse Point Cloud (b) Dense Point Cloud

(c) Dense Point Cloud - Ground Plane

Figure 35. linear staticcross -15D-15H. Note the reduction in vertical error occurring
within the regions of overlap.
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4.3.4 Linear Flight Profile - Multiple Profiles Limited,

linear staticcrosslimited XXDXXH.

Limiting the supplied images to only those containing the target scene and over-

lapping images from the orthogonal pass produced incredibly realistic results. In sev-

eral instances, this method of data conditioning provided the only means by which

successful reconstructions were finally achieved as seen by the pure nadir collections

reconstructions of the target. Previous independent and fully combined passes failed

to reconstruct these profiles.

(a) Sparse Point Cloud (b) Dense Point Cloud

(c) Dense Point Cloud - Ground Plane

Figure 36. linear staticcrosslimited 0D0H. Although significantly better reconstruc-
tions exist to depict this data set’s ability to reconstruct the scene (see appendix), this
example presents a unique case. In three other situations where the passes were used
individually or combined in their entirety failed. By limiting the applied images to
only those with similar imaged regions, the reconstruction succeeded.
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4.3.5 Circular Flight Profile, circular dynamic XXX.

The reconstructions observed from the circular profiles provided high quality rep-

resentations of the target area with exception of the 60◦ profile. By viewing the target

area from all directions in a complete 360◦ circle, the profile maximizes the chances

of observing and recording all facets of the target area. Despite the constant target

range, the extensive angular diversity provided sufficient information into the solution

space to determine a robust fundamental matrix relating the images.

(a) Sparse Point Cloud (b) Dense Point Cloud

(c) Dense Point Cloud - Ground Plane

Figure 37. circular dynamic 45D1000. Dense point clouds originating from the circular
flight profiles exemplify the ability of PMVS2 to find additional correspondences within
regions of overlap. The higher density of points contained within the reconstruction’s
center is prevelant.
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4.3.6 S-Curve Flight Profile, scurve dynamic XXX.

Of all the flight profiles, those constructed from the s-curve flight profile provided

the most accurate reconstructions due to the combination of angular diversity and

target magnification. All reconstructions were successful with exception of the 60◦

profile.

(a) Sparse Point Cloud (b) Dense Point Cloud

(c) Dense Point Cloud - Ground Plane

Figure 38. scurve dynamic 30D1000. Note at discontinuity in camera center position-
ing occurring at the nadir point. This feature grows until complete reconstruction
failure at 60◦ when the discontinuity’s severity precludes determination of camera cen-
ters on both sides of nadir.
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4.4 Chapter Summary

Both simulated MATLAB reconstructions of a simple geometric structure and

those of a synthetic 3-D environment using academic software packages were accom-

plished. The MATLAB reconstruction of a nine point structure allowed variance in

the convergence and number of cameras to investigate the dependency of reconstruc-

tion accuracy on these parameters. In total 190,000 individual tests were completed

covering all permutations by varying the convergence angle from 1◦ to 100◦ in 1◦

increments while the number of camera frames at each convergence angles from 2 to

20. In regards to the synthetic 3-D environment, 44 collections encompassing linear,

circular, and s-curve flight profiles with a mixture of static and dynamic cameras

totaling 2500 images. 7 of the 44 profiles failed to provide sufficient reconstructions

enabling identification of the target area with all originating from the linear static

passes or those in excess of ±45◦.
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V. Analysis

5.1 Chapter Overview

The results seen in the previous chapter verify the SfM/MVS algorithm’s ability

to reconstruct a 3-D point cloud from 2-D images. Within the MATLAB simulation,

it was noted variances in the number of camera frames and convergence angle produce

significant effects on reconstruction accuracy. This chapter seeks to add fidelity and

quantify this relationship to determine the relationship between these parameters on

reconstruction accuracy. Furthermore, the Sadr City dense point cloud results will

undergo an extensive analysis where the effects of viewing geometry on the accuracy

and completeness of the reconstruction will be investigated. It will be shown rich

datasets which contain significant angular and spatial diversity provide the best data

to accurately reconstruct the scene. Finally, rationale why specific image sets achieve

superior results is investigated by probing the image distribution within the algorithm

in which an interesting multi-mode structure is observed.

5.2 Effects of Convergence Angle and Number of Cameras

The MATLAB simulation effort produces a variety of object reconstructions rep-

resentative of the diverse datasets. While constraining the number of camera frames

and convergence angle, the accuracy of the reconstruction decreases to nearly unrec-

ognizable results when the convergence angles was less than 6◦ or when less than 3

cameras were used. This provides a baseline for the minimum requirements neces-

sary for an accurate reconstruction. Furthermore once these thresholds are achieved,

RMSDE continues to decrease as either the number of cameras or convergence angle

increases as seen Figure 39 denoting a interdependence on both the number of camera

frames and their spatial distribution.
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Figure 39. Effect of convergence and number of frames on reconstruction accuracy of a
simple nine point structure. Note the large minimum highlighting the reconstruction
algorithm’s robustness to variable collection geometries. Operationally this provides
potential users a wide operational envelope in which imagery may be collected and still
obtain an accurate 3-D scene reconstruction.

The number of camera frames directly effects the resulting accuracy by control-

ling the amount of information supplied to the SfM/MVS algorithms. Therefore it

is expected additional cameras would improve the scene reconstruction accuracy as

the above figure indicates, but physical explanations why the algorithm fails with two

cameras and subsequently improves with the inclusions of additional cameras remains

to be determined. Both of these issues are addressed below. Two camera reconstruc-

tions failed because the the autocalibration process contains insufficient information

to correctly estimate the camera focal length. When the absolute quadric constraint

appears in the form found in Equation 45 the five unknowns, [a1, a1, a1, a1, a1], may
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be recovered with the four constraints seen in Equation 46 for each image pair [28]. In

such case three views are required for a unique solution. When less than three cameras

are employed, the focal length estimation often results in imaginary or grossly un-

derestimated real focal lengths centered about zero. Regardless, when this erroneous

focal length is inserted into the camera calibration matrix, K, and applied to the

correspondences to achieve a partially calibrated view, the projective reconstruction

contains significant errors. Furthermore, the partially calibrated data points serve

as the foundation for the rotation and translation estimates during the rigid body

approximations to extract the projective to euclidean upgrade matrix. Ultimately,

the resulting rotation and translation matrices derived off the erroneous partially

calibrated views results in null or imaginary values.

This problem is alleviated by increasing the number of camera frames to cor-

rectly estimate the focal length. At three camera frames, the focal length with an

initial value of 400 is correctly estimated to a value of 499.94 of the true 500.00 with

unitless dimensions. Additional camera frames continue to increase reconstruction

accuracy eventually reaching on observed focal length estimate of 500.00 ± 0.001 at

twenty cameras. Once this threshold is met, the additional information allows for

solution refinement which steadily improves the estimated focal length and therefore

reconstruction accuracy. Figure 40 accurately illustrates this relationship.
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(a) Derived focal length (b) Deviation from actual focal length

Figure 40. Relationship between focal length and RMSDE illustrating the effects of
improved focal length estimation on the resulting RMSDE accuracy.

The left image depicts the gradual refinement of the focal length as the number

of camera frames increase alongside the resulting RMSDE improvement. The right

image clarifies this relationship by showing the proportional effect of decreasing ab-

solute focal length error and accuracy. Subsequent analysis determined the effects

of the initial value had little effect on the algorithms ability to rapidly converge to

the accurate focal length. When seeded with initial values ranging from 10 to 10000,

the algorithm converged to 500± 2 within the first three camera frames and steadily

improved with additional camera frames. As an extreme case representing the true

robustness of the algorithm, an initial seed value of 1× 106 required only six camera

frames to converge to a value of 500 ± 2. It is also noted additional camera frames

beyond the initial three contribute little to the overall accuracy of the reconstruction

as seen in the scale of the right axis. Therefore unless absolute accuracy is required

three camera frames will suffice to generate an accurate reconstruction with minimal

computational demand.

As the convergence angle increases, a relationship similar to that seen with in-
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creasing the number of camera frames is observed. With convergence angles less than

6◦, the reconstruction poorly represents the scene as seen in Figure 32a with RMSDE

exceeding 8.0 where typical reconstruction have RMSDE on the order of 10−4. The

reconstructions were so poor, Figure 39 does not include RMSDE associated with

convergence angles less than 6◦ since the extreme RMSDE range would eliminate

the resolution at lower ranges. Whereas the camera threshold was dependent on the

extraction of a correct focal length, the convergence angle threshold is related to the

accurate determination of the R and T matrices which define the motion between

cameras. When the cameras are only separated by a marginal baseline at conver-

gence angles less than 6◦, the algorithm struggles to determine the exact placement

of the cameras in relation to one another. The poor placement of the camera centers

result in projective reconstructions with negative z-depths, which in return, frustrate

the Euclidean upgrade once an accurate focal length is estimated.

Increasing convergence angles beyond the minimum 6◦ improves the reconstruction

accuracy in much the same way increasing the number of cameras provided refinement

of the focal length. This improvement directly correlates to the improved camera pose

determination. Within the MATLAB environment the exact y-translation between

camera frames is controlled during the acquisition of each image. These images then

form the basis of the final Euclidean reconstruction which requires determination of

the relative K, R, and T components. The K matrix has already been discussed in

the preceding analysis and is well formed at 10 cameras which serves as the basis for

the remainder of this section. To illustrate the effects of error within the R and T

matrices on the reconstruction, a number of simulations were run with ten cameras

and increasing convergence angles. Since the camera was translating along the y-axis

in incremental steps, the translation of the camera derived during the reconstruction

should match that of the initial input to a scale factor. Figure 41 illustrates the effect
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on RMSDE compared to the absolute error in the y-component of the translation

vector identified in Equation 6. 300 iterations were averaged to achieve a statistically

relevant number of data points.

Figure 41. Relationship between translation error and RMSDE.

As the y-translation error increases, accuracy is negatively effected. At small

convergence angles the algorithm struggles to extract the rigid body motion of the

camera to determine the proper translation vector. However as convergence angle

increases, translation determination improves. As a point of order, the rotation ma-

trices were also analyzed, and the derived values closely matched those used to acquire

the images. Thus, they were not addressed further.

In summary, the number of cameras and convergence angle have a profound ef-

fect on the ultimate reconstruction accuracy. Thresholds exist for each parameter

as the number of camera frames must be at least three and the convergence angle

must exceed 5◦. These two thresholds are interrelated through the camera projection

matrices, Π1e = [K|0] and Π2e = [KR,KT ], seen at the conclusion of Chapter II.

Both Π1e and Π2e contribute to the final 3-D reconstruction and are dependent on
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accurate values for K, R, and T . Unfortunately when only 2 cameras are used, K is

erroneous, and when the convergence angle is less than 6◦, R and T exhibit anomalous

values. Finally, additional cameras or wider convergence angles improve the recon-

struction accuracy, but computational time and resources are adversely affected for

little improvement in this situation when all scene vertices are known. With real

world situations, additional images permit reconstruction of otherwise unobserved

target facets permitting a more complete target reconstruction.

5.3 Case Study: SIFT Relationships and Scene Dependency

In the real world, perfect knowledge of the correspondences between cameras

does not exist. Occlusions, specular reflections, and feature gradient similarities all

frustrate the SfM/MVS process by limiting the knowledge of all features within each

image. In fact the introduction of these effects so profoundly influences the final

reconstruction, a separate case study is provided to reveal the inherent difficulties in

extracting and matching features from real world scenes. The MATLAB simulation

was unhindered by these real world effects so the Blender and Sadr City models were

utilized to observe the effects of viewing geometry on the number of correspondences.

This particular case study is only concerned with the effect of viewing geometry on

correspondences and introduces the concept of scene dependency. The accuracy and

completeness of the reconstructions from the various flight profiles will be addressed

in later sections.

It is theorized correspondences between images will decrease as convergence angle

increases using current feature matching techniques. Since image correspondences

provide the basis for 3-D vertices in the final reconstruction, the quantity of cor-

rect correspondences directly impacts the model’s likeness to the original scene. A

special data collection file was used to investigate the effects of scene dependency,
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linear dynamic -15D1000 300images, which is uniquely suited to the effort since

300 images were obtained as opposed to the default of 50 images. This ensures high

accuracy in selecting the images which closely match the desired convergence angle.

For example, with 300 images, the error incurred by selecting two images which cor-

respond to the desired convergence angle is only ±0.8◦ versus ±4.6◦ when only 50

images were collected.

As an illustration, Figure 42 depicts the features extracted from two images from

different vantage points. The left image was acquired at the closest point to the target

whereas the right image portrays the recorded scene from the furthest point. Each

of these images show SIFT’s ability to extract numerous keypoints from each image

with 5323 and 10445 keypoints extracted from each image respectively.

(a) Close proximity to target (b) Distant to target

Figure 42. Keypoint descriptors identified in each image.

Obviously SIFT’s extraction of numerous keypoints is irrelevant if the keypoints

fail to match with another keypoint in subsequent images. Therefore, what remains to

be seen is the effect of convergence angle on the number of correspondences. Figure 43

illustrates the drastic decrease in correspondences as convergence angle increases.
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(a) 5 Degrees Separation

(b) 45 Degrees Separation

(c) 90 Degrees Separation

Figure 43. Correspondences between images at varying convergence angles. The de-
crease in correspondences in relation to the convergence angle is due to the reduced
image overlap area and profound differences in image rotation and translation. Each
of the subfigures above consists of two images separated by the convergence angle
denoted. The cyan lines represent successful matches between the two images.
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At a 5◦ convergence angle the baseline between the images is relatively short, and

therefore the images acquired represent very similar projections of the target area.

With nearly identical images, each keypoint has a high probability of being found in

the opposing image due to the significant overlap and relatively small rotation and

translation between camera frames. However as the convergence angle increases the

number of correspondences decreases despite the increase in extracted keypoints in

each image. Table 3 shows the relationship between the convergence angle and effect

on correspondences.

Table 3. Number of keypoints extracted from each image at variable convergence
angles. Note the direct relationship between convergence angle and correspondences
and the inverse relationship to the number of matched keypoints. For complete dataset
see Figure 46.

Convergence Image 1 Image 2 Matched Correspondence
Angle Keypoints Keypoints Keypoints Percent

5◦ 5323 5378 1201 22.5%
45◦ 6663 5977 116 1.94%
90◦ 10445 9726 29 0.30%

To explain this drastic decrease, two parameters are in effect; image overlap and

rotation/translation between images. It is trivial to discuss the importance of image

overlap to generate correspondences between images. Without commonalities be-

tween the images which occur in areas of overlap, it is impossible to expect a feature

extraction and matching algorithm to register the two images. What is not so appar-

ent is the relationship between image overlap at differing viewing angles. Figure 44

highlights this relationship by projecting the acquired image from each sensor onto

the ground plane represented by the green polygons. The visualized sparse point

cloud (blue vertices) and camera position and rotation were extracted from Bundler’s

bundle.out file.
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(a) 5 Degrees Separation (b) 45 Degrees Separation (c) 90 Degrees Separation

Figure 44. Overlapping regions on ground plane. Note correspondences must be found
within the overlapping regions. Also as the ground projection increases as seen in
Figure 44(c), the relative ground sampling distance, or effective target resolution de-
creases. This leads to a proportional decrease in target correspondences.

Several significant features exist. First note how the preponderance of generated

vertices occur within the overlapping region. The sparse point cloud was generated

using all 300 images, and therefore vertices occurring outside the overlapping region

are attributed to additional camera frames other than the two portrayed. Secondly

the overlap between images decreases as the convergence angle increases, thereby

reducing the possible number of correspondences. Figure 45 visualizes the reducing

overlap between images. As look angle increases to the target, the ground projection

becomes larger, yielding the increased number of keypoints seen in Table 3; however,

the overlap significantly decreases resulting in rejection of many keypoints.
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(a) 5 Degrees Separation

(b) 45 Degrees Separation

(c) 90 Degrees Separation

Figure 45. Relationship between the projections of the images and the overlapping
regions highlighted in red.

When mapped over a wide range of convergence angles, the relationship between

the number of correspondences and image overlap becomes apparent as seen in Fig-

ure 46. One immediately notes the exponential decrease in correspondences as the

convergence angle increases whereas only a linear relationship exists between the

overlap and convergence angle. This seemingly contradicts the previous relationship

between SIFT correspondences and overlap, but scene effects especially occlusions
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have not been accounted for. Many of the keypoints derived from one image describe

specific features within the scene, i.e. building edges, windows, and shadows. As

the rotation and translation between the two images increases, the resulting viewing

angle will also change. For example, in one image the east facing wall of a building

is imaged whereas the west side is imaged at the far end of the collection. Obviously,

the opposing sides of the building will not relate to one another. Therefore, corre-

spondences between images separated by highly divergent viewing angles are reduced

to common areas such as roof tops. Furthermore, the gradient feature descriptors

change dramatically with large convergence angles frustrating gradient based feature

matching algorithms. Even similar points such as those on the rooftops will be de-

scribed by different gradients, and the points may not produce an image to image

correspondence. In essence, the images will contain a large number of keypoints, but

they will be of different features within the scene and contain a wide variety of fea-

ture gradients, thereby reducing image correspondences. This fact lies at the heart

of scene dependency.

Figure 46. Number of correspondences as function of convergence angle.
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It would be remiss to ignore the feature occurring at 25◦ in the above figure. It

is expected image overlap will decrease as a function of convergence angle, but the

data does not support this in its entirety. This feature is attributed to the fact the

collection path did not occur directly at nadir over the target, but 15◦ to the north.

Therefore at this angle the two ground projections are nearly orthogonal and the

image 2 projection was nearly completely enclosed within the image 1 projection. A

rapid misalignment of the two ground projections occurs slightly afterwards before

resuming a linear decrease.

Finally as a precursor to the remaining analysis, Figure 47 and Figure 48 show the

ground projections originating from the five main flight profiles represented by the

green polygons. Both the camera pose and the sparse point cloud were extracted from

the bundle.out file. Figure 47 depicts the ground projection with all camera fustrums

and ground projections plotted whereas Figure 48 shows only selected camera frames

for clarity. Note the preponderance of points occur within the image overlap area, a

feature especially distinct in the circular orbit.
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(a) circular dynamic 15D1000 (b) scurve dynamic 45D1000

(c) linear dynamic 0D1000 (d) linear static 45D1000

(e) linear staticcross -15D-15H

Figure 47. Ground projections from various reconnaissance profiles. Note in areas
where significant overlapping occurs corresponds to the preponderance of image corre-
spondences.
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(a) circular dynamic 45D1000 (b) scurve dynamic 45D1000

(c) linear dynamic 0D1000 (d) linear static 45D1000

(e) linear staticcross -15D-15H

Figure 48. Only selected camera frames from the entire data set seen in Figure 47 are
plotted to highlight the effect of camera orientation on ground projection.
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The effects of convergence angle on correspondences was described in this section.

It was observed the number of correspondences experiences an exponential decay with

the increase of convergence angle. The decrease is attributed to both the reduction in

overlap between images as well as occlusion effects resulting from the scene geometry.

Cognizant of these principles it is now essential to investigate the effects of viewing

geometry on reconstruction accuracy.

5.4 Flight Profiles: Reconstruction Accuracy (RMSDE)

The synthetic environment was successfully reconstructed as seen in the examples

from the previous chapter. The task now turns to determining the accuracy of the

reconstructions to the original model, hereafter referred to as the ground truth, seen

in Figure 28. Complicating this effort is the relative nature which the SfM/MVS

algorithms reconstruct the scene. Each reconstruction varies in terms of scaling as

well as rotation about all three Cartesian axes. Although the vertices and camera

parameters within the point cloud are mutually defined to one another, and therefore

the model is self consistent, direct comparison of multiple point clouds requires cor-

rection of the scaling and rotation to a common parameter set. The same principle

holds true for the ground truth model. Therefore, it is necessary to determine the

appropriate scaling and rotation matrices to properly align the two point clouds for

comparison.

The first task is to accurately determine the ground plane within the point cloud.

Although several techniques are available, the author choose a RANSAC assisted

method. As described in Section 2.5, a plane is fitted to three randomly chosen

points within the cloud, and the distance of all other points to the plane is recorded.

Those points whose distances fall within a predefined threshold distance are recorded

as inliers. This process is repeated a statistically significant number of times and
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the plane with the largest number of inliers is kept. Upon conclusion the RANSAC

process outputs the 3-D location of the three principle points (a, b, and c) as well as

the coefficients of the plane equation Ax+By+Cd = D. The results of this process

are seen in Figure 49 where the green triangle represents the plane with the largest

number of inliers.

Figure 49. Determination of ground plane reconstruction. RANSAC fit parameters
t = 0.001 where 277 of 18864 points fall within tolerance.

This process is suitable for this type of point cloud since the preponderance of

points occur on a well defined ground plane. Caution must be exercised with ap-

plying this technique to a slanted or hilly terrain or when the reconstructed area

contains proportionally equal number of points along difference axes. In such case an

inaccurate ground plane may result.

The RANSAC process was applied to both the ground truth and reconstructed

point clouds. The ground truth plane was determined by fitting 1,000,000 points to

sadrcity.obj file to extract an extremely dense point cloud reconstruction of the

area. Although the ground plane was initially assumed to be centered about the

origin with a normal pointing directly along the z-axis, it was determined to have a
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slight inclination on the order of 10−7 in the dx and dy directions. This only slightly

modified the next task to align the ground planes due to the relative reconstruction

results. Using these three points (a, b, and c), two vectors,
−→
ab and −→ac, were computed.

The plane normal was then computed via cross product of the two vectors,
−→
ab ×−→ac,

and verified against the RANSAC derived plane normal of (A,B,C).

The x and y rotations required to align the reconstructed normal to the ground

truth normal was determined by calculating the tangent between the x and y co-

ordinates. Once the deviation angles in the x and y directions were determined a

standard 3-D rotation matrix was used to extract the necessary rotation matrix to

correctly reorient to the reconstructed ground plane. The results are clearly seen in

Figures 50 and 51 which demonstrate the successful rotation of the reconstruction to

the xy plane.

Figure 50. Corrected ground plane (red) compared to original reconstructed ground
plane (black) in nominal situations.
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Figure 51. Corrected ground plane (red) compared to original reconstructed ground
plane (black) in extreme situations.

Two observations are apparent in the above figures. First this technique applies

equally well to both typical and atypical rotations as seen in Figure 50 and Fig-

ure 51. The second observation confirms an original assumption that most of the

points exist along the ground plane. As clearly seen in the corrected reconstruction,

the preponderance of points lie on a single plane.

The final product after a necessary translation of the entire point cloud to set the

ground plane to z = 0 is seen in Figure 52. The results have been normalized to

solve for the scaling difference between the ground truth and reconstructions. To this

point the mutually self consistent reconstructions have been related to one another

by solving for the scaling, x, and y rotational relationships seen in the figure below.
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Figure 52. The ground truth point cloud representation (red) compared to rectified 3-D
reconstruction (black). Note the x and y axis have been correctly solved but z-rotation
remains.

The only remaining task was determining the necessary z-rotation to obtain the

final alignment with the ground truth. This step required only the twenty six reference

points and noting the right angle formed by the four points defining the the bottom

of each structure to the x-axis. For instance, when a line intersecting the rear left and

front left points was extended to the x-axis, it formed a 90◦ angle to that axis as seen

in Figure 53(b). By averaging all such line combinations, the appropriate z-rotation

was determined. The results of the final correction are seen in Figure 53(c).
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(a) Reconstruction (b) Ground Truth (c) Corrected Z-Axis

Figure 53. Correction of z-axis rotation. The initial x and y axis correction seen in (a)
still require z-rotation to align with ground truth (b). Vertices located along building
bases form 90◦ to the x-axis. The final reconstruction (c) is corrected to all three axes
rotations as well as normalized to scale with ground truth.

5.4.1 RMSDE: Linear Static Profiles.

The linear static profiles were analyzed for accuracy based on the alignment tech-

niques discussed above. Once all flight profiles were correctly oriented to the truth

model, the RMSDE was calculated using all twenty six reference points. The calcu-

lated RMSDE values, seen in Table 4 are provided in two forms, both absolute and

normalized measures. The absolute values represent the actual RMSDE as calculated

by Equation 49, whereas the second set of RMSDE have been normalized to the worst

performer. The normalized values provide a global reference comparing the profile to

all others. The lower the number the more favorably it performed in comparison to

other reconstructions contained in this effort.

Table 4 clearly shows the intermittent difficulties the SfM/MVS algorithms have

reconstructing the scene from the various look angles. At near nadir look angles, the

algorithms failed to produce a satisfactory output. The term failed is subjectively

applied to any reconstruction in which less than 1000 vertices were generated, and the
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target area is unrecognizable. For visual depictions of these failed reconstructions, see

figures in Appendix B. The failed reconstructions at nadir and near nadir look angles

Table 4. Root Mean Square values for all linear static profiles.

Flight Profile Absolute RMSDE Normalized RMSDE
linear static -60D1000 0.0833 0.3695
linear static -45D1000 0.0580 0.2573
linear static -30D1000 0.0566 0.2513
linear static -15D1000 0.0672 0.2979
linear static 0D1000 Failed Failed
linear static 15D1000 Failed Failed
linear static 30D1000 Failed Failed
linear static 45D1000 0.1654 0.7336
linear static 60D1000 0.0981 0.4352
linear static -60H1000 0.0897 0.3979
linear static -45H1000 0.1300 0.5768
linear static -30H1000 0.0555 0.2462
linear static -15H1000 0.1050 0.4659
linear static 0H1000 Failed Failed
linear static 15H1000 0.0897 0.3979
linear static 30H1000 Failed Failed
linear static 45H1000 0.0663 0.2941
linear static 60H1000 0.1747 0.7752

correspond to an insufficient convergence angle and small number of camera frames. A

static pass is limited to record images fixed to the airframe’s velocity vector. Therefore

the percentage of camera frames which contain the target area is dependent on the

position and orientation of the camera as well as the camera’s focal length. Under

the conditions used in this effort, the number of camera frames containing the target

ranged from 11 to 27 at look angles from 0◦ (nadir) to 60◦ respectively. Compare

this to the 50 camera frames in which the target is in view for a linear dynamic flight

profiles. The lack of camera frames is not the only issue. Due to the limited number of

camera frames containing the target area, the convergence angle between the extreme
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cameras is also restricted. At nadir the convergence angle containing all 11 camera

frames was only 39.9◦ and at a look angle of 60◦ the convergence angle measured

40.0◦ with 21 camera frames containing the target area. Finally the richness of the

data is fundamentally limited by the rotation degeneracy inherent in the linear static

data collections. Since the camera is not rotating between sequential images, the rigid

body motion lacks a necessary element and underconstrains the computation of the

fundamental matrix.

Unlike the MATLAB simulation, real world factors complicate the accuracy of

scene reconstruction beyond camera frames and convergence angles. This is seen as a

disturbing trend in the linear static results. It is reasonable to expect similar results

from symmetric flight profiles which share the identical number of camera frames and

convergence angles, but as the RMSDE analysis indicates, linear static 15D1000

and linear static 30D1000 failed to produce realistic results whereas their symmet-

ric counterparts performed well. This contradiction is attributed to scene dependency,

or more specifically the correspondences between images. When comparing the corre-

spondences between sequential image pairs from each symmetric profile, such as image

25 and image 26, the image pairs from the successful -30D pass contain significantly

more correspondences than those from the failed 30D pass as seen in Figure 54.
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(a) Image from 30D (b) 975 Correspondences

(c) Image from -30D (d) 1525 Correspondences

Figure 54. Scene effects substantially impact the resulting correspondences. The two
images seen above were acquired similar distances and relation to the target; however
at opposite viewing angles. The lack of correspondences from the linear static 30D1000

significantly hindered the total reconstruction.

This shows the inherent scene geometry dependency on the 3-D reconstruction

beyond simple camera frames and convergence angles. Furthermore, the discrepancy

grows as the convergence angle increases as seen in Table 5.

5.4.2 RMSDE: Linear Dynamic Profiles.

The linear dynamic reconstructions provided improved results compared to the

linear static profiles discussed above. It is apparent the agile cameras, which allow

for all 50 camera frames to image on the target area and the full 90◦ convergence an-
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Table 5. Comparison of correspondences between image pairs from the symmetric
linear static 30D1000 and linear static -30D1000 data collections.

Image Pairs
Flight Profile 25\26 24\27 23\28 22\29

linear static 30D1000 975 334 154 85
linear static -30D1000 1525 970 636 450

gle, drastically improve the resulting RMSDE. Furthermore since the camera images

multiple sides of the target area, reconstruction of vertical surfaces is not limited to

the parallax effects observed in the static collection. With increased visibility of the

target, more facets of the structure may be reconstructed resulting in an overwhelming

improvement in the RMSDE.

Table 6. Root Mean Square values for all linear dynamic profiles.

Flight Profile Absolute RMSDE Normalized RMSDE
linear dynamic -60D1000 0.1230 0.5456
linear dynamic -45D1000 0.0997 0.4421
linear dynamic -30D1000 0.1011 0.4487
linear dynamic -15D1000 0.0538 0.2387
linear dynamic 0D1000 0.0310 0.1375
linear dynamic 15D1000 0.0450 0.1997
linear dynamic 30D1000 0.0809 0.3590
linear dynamic 45D1000 0.1122 0.4976
linear dynamic 60D1000 Failed Failed
linear dynamic -60H1000 0.0811 0.3600
linear dynamic -45H1000 0.0880 0.3902
linear dynamic -30H1000 0.0545 0.2420
linear dynamic -15H1000 0.0602 0.2673
linear dynamic 0H1000 0.0351 0.1556
linear dynamic 15H1000 0.0449 0.1991
linear dynamic 30H1000 0.0652 0.2894
linear dynamic 45H1000 0.0685 0.3041
linear dynamic 60H1000 0.0995 0.4412
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The linear dynamic collections also reveal another important attribute to scene

reconstruction; the contributions of target magnification, or spatial diversity, between

images. While the camera center is far from the target area, the target reconstruction

is small when compared to the collections acquired much closer to the objects. Not

only has the usable camera frames increased and therefore convergence angles, but

also the size of the target within each image. The combination of multiple perspectives

has provided the rich camera motion necessary for accurate reconstructions.

A final trend worth mentioning is the gradual increase in RMSDE from nadir

to the oblique look angles. As mentioned earlier, correspondences are required to

generate 3-D vertices. At oblique look angles the imaged ground plane is large com-

pared to the target area. Therefore target associated correspondences experience a

substantial reduction as a function of distance to target. This feature is most promi-

nently seen in the linear dynamic 60D1000 reconstructions seen in the appendix.

Furthermore, occlusions from surrounding building structures or terrain increase as

look angle increases. The combination of additional occlusions and the reduction in

target prominence within the image projection lead to fewer target associated corre-

spondences.

Graphically the linear static and dynamic results are seen in the following figure.

Of note is the symmetric relationship observed in the dynamic collections which is

absent in the static collection for reasons already discussed.
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Figure 55. Effect of viewing geometry on both the static and dynamic linear flight
profiles.

5.4.3 RMSDE: Multiple Linear Profiles.

Linear static profiles were limited to relatively few camera frames and conver-

gence angles with the target in view. Therefore when multiple collections are com-

bined improved results are expected due to the increase in image diversity. The

combined passes yielded some of the most accurate results of this effort notably

linear staticcross -15D-15H as seen in Table 7.

Table 7. Absolute Root Mean Square values for all linear static cross profiles.

Failed 0.0675 0.1099 0.0973 45D
0.0672 0.0356 Failed 30D

0.1323 0.1051 Failed 0.1165 15D
0.0643 Failed 0.1530 0D

0.0503 0.0340 0.1426 Failed -15D
0.1872 0.0493 Failed -30D

0.0761 0.0427 0.0494 0.0765 -45D

-45H -30H -15H 0H 15H 30H 45H
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However, the combination of multiple linear passes also resulted in a significant

number of failures. Most of these failures are attributed to individual pass failures for

the aforementioned reasons, but this explanation cannot be universally applied. In-

stead profiles such as linear staticcross 45D45H and linear staticcross -15D45H

which consist of reasonably successful independent reconstructions, failed when com-

bined. This is attributed to the substantial error associated in areas where the lin-

ear passes do not overlap. The SfM/MVS algorithms seek to determine the op-

timal arrangement of camera parameters and vertex locations during the bundle

adjustment process and significant differences in the two individual passes compli-

cate this effort. Restricting the SfM/MVS process to only those images contain-

ing the target area, yielded considerably better results as seen in Table 8. In fact

linear staticcross 15D15H which failed when the entire pass was evaluated, be-

came the second best performer of the entire effort. Furthermore, the purely nadir

passes which failed when analyzed independently and jointly reconstructed success-

fully when the data was limited to strictly the overlapping areas.

Table 8. Absolute Root Mean Square values for all linear static cross limited profiles.

Failed Failed 0.0616 0.1678 45D
0.1289 0.0833 Failed 30D

0.1833 0.0759 0.0322 0.0504 15D
0.0364 0.0639 0.0552 0D

0.2254 0.0325 0.0424 0.0809 -15D
0.0407 0.0458 0.0577 -30D

0.0623 0.0353 0.0421 0.0403 -45D

-45H -30H -15H 0H 15H 30H 45H

The effects of orthogonal viewing angles is best seen in Figure 56. Reconstruction

areas derived from overlapping profiles supplied superior accuracy compared to non-

overlapping areas. Furthermore, when all images were included, competition between
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the four independent areas frustrated the reconstruction process often resulting in

inferior results. When these non-overlapping areas were omitted, the RMSDE sub-

stantially improved.

Figure 56. Substantially improvement in the RMSDE accuracy was observed when two
orthogonal passes were combined. Furthermore note the substantial noise in the non-
overlapping areas and reconstruction fidelity contained within the overlapping area.

At this point it is pertinent to introduce the impact of collection parameters on

the reconstruction error ellipses. At narrow convergence angles the resulting depth

error is larger compared to wider convergence angles. Figure 57 demonstrates this

principle through four situations with a variable convergence angles, Φ, where the first

image represents a static camera and the remaining a dynamically controlled camera.

When orthogonal static passes are combined, the convergence angle is artificially

increased by combining two camera frames from separate passes to represent the

left schematic. This visual depiction of the error ellipses also portrays the trade off

between convergence angle as defined by the baseline between images and the error.

Dynamic passes are afforded the benefit of wide convergence angles to reduce depth

error as well as narrow baselines to increase correspondences.
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Figure 57. Error Ellipses with difference pass dynamics.

5.4.4 RMSDE: Circular Profiles.

Overall the circular profiles resulted in the most consistent RMSDE as seen in

Table 9. The ability to image the target area from all sides allows for the reconstruc-

tion of vertices on all facets of the target buildings. Furthermore, the dynamic nature

of the collection contributes numerous camera frames and wide convergence angles

further increasing accuracy. These factors imply a circular orbit should provide the

best reconstructions, but this is not true. The lack of translation with respect to

the target limits target spatial diversity, and the reduced significance of the target

within the global scene leading to eventual occlusion of vertices at oblique look angles

adversely effects target reconstruction.

Table 9. Root Mean Square values for all circular profiles.

Flight Profile Absolute RMSDE Normalized RMSDE
circular dynamic 15D1000 0.0431 0.1910
circular dynamic 30D1000 0.0707 0.3135
circular dynamic 45D1000 0.0647 0.2870
circular dynamic 60D1000 0.1688 0.7489

The true limiting factor inherent to all circular profiles is motion degeneracy, or

the lack of translation between camera frames similar to the rotation degeneracy seen
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in the linear static results. In other words, although the camera is physically trans-

lating around the structure when perceived from the scene’s point of view, it could

also appear the scene is simply rotating from the camera’s point of view. Therefore

an ambiguity exists in that the theoretical framework assumed the camera would

translate relative to the object from frame to frame resulting in a real baseline and

convergence angle. Despite this absence of translation, the plethora of correspon-

dences between sequential camera frames allow for the computation of unique camera

projection matrices, Π1, Π2, . . . , Πn. Regardless, the fundamental matrix will con-

tinue to be underconstrained by the data under pure rotational motions [34]. As

such, Torr et. al. explained potential correspondences will be omitted and potential

mismatches included, thereby limiting reconstruction ability.

In summary, circular profiles present an interesting dilemma. Due to the pure

rotation and underconstrained fundamental matrix, a circular orbit requires more

correspondences than other flight profiles explaining why this data set contained 100

images was frequently outperformed by other flight profiles.

5.4.5 RMSDE: S-Curve Profiles.

The s-curve profile contains all the necessary elements for a successful reconstruc-

tion: dynamic imaging, 360◦ visibility of the target, avoidance of motion and rotation

degeneracy, and variable scaling of the target. The culmination of all these factors

result in the richest data set analyzed as the diversity in correspondences provides

ample data to compute an extremely robust and accurate fundamental matrix. The

results of the RMSDE analysis are seen in the table below which reflects the accuracy

to which the fundamental matrix was computed.

The reconstruction failure at 60◦ is attributed to the simulated keyhole encoun-

tered with azimuthal-elevation (AZ-EL) camera mounts where the mechanics of the
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Table 10. Root Mean Square values for all s-curve profiles. Note scurve dynamic 30D1000

provided the most accurate results.

Flight Profile Absolute RMSDE Normalized RMSDE
scurve dynamic 15D1000 0.0502 0.2228
scurve dynamic 30D1000 0.0232 0.1028
scurve dynamic 45D1000 0.0429 0.1904
scurve dynamic 60D1000 Failed Failed

mount prohibit tracking of targets as they pass directly below. As the airframe passes

directly overhead, the camera slews to the target until it reaches its maximum deflec-

tion of 90◦. The camera mount must instantaneously rotate 180◦ degrees to continue

tracking the object as the airframes moves away. The dynamic camera mounts simu-

lated in Blender suffer from this limitation and the resulting images instantaneously

flip 180◦ as the camera passes directly overhead to maintain a sky-up orientation. The

effect on reconstruction is seen in the camera positions plotted in the sparse point

cloud. In all s-curve flight profiles, the camera passes directly overhead, and the two

camera frames located on either side of the pure nadir point are severely rotated from

one another. This rotation hinders the reconstruction process which must account for

the drastic change in rotation over a relatively short baseline. This manifests itself in

the poor reconstruction of the camera pose at near nadir points. The degradation in

rigid body reconstruction of the camera centers eventually reaches a peak at the 60◦

pass when the algorithm fails to extract forward camera movement beyond the nadir

point. Finally the circular and s-curve RMSDE results are visualized in Figure 58.
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Figure 58. Effect of viewing geometry on both the circular and s-curve flight profiles.

5.5 Localized Point Density

The completeness of the reconstructions was analyzed to determine the degree

to which the point cloud reconstructs all surfaces. This second measure of quality

is required since a reconstruction with significant areas void of vertices may conceal

important scene information. The two reconstructions in Figure 59 illustrate this

point. The left image contains roughly five times the numbers of vertices but in

terms of RMSDE, it is marginally poorer than the right. Therefore, the case is clear

an additional factor is required to determine which aerial profiles render the most

accurate and complete results.

A localized point density of each flight profile was determined by calculating the

number of pixels within the immediate area surrounding the target area. A global

point density measurement is ill suited since the variable look angles present different

ground projections. For instance, many aerial profiles with look angles greater than

45◦ failed to accurately reconstruct the target area, but the total number of vertices
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(a) High Point Coverage (b) Low Point Coverage

Figure 59. Localized density of target area of two reconstructions with similar accuracy
but significantly different point densities. The left image contains 19783 points with
an absolute RMSDE of 0.0707 whereas the right image contains 4807 points but an
improved absolute RMSDE of 0.0672.

are two to three times greater than those reconstructions of the more accurate shallow

look angles.

The localized point density for all linear profiles are displayed in Figure 60. Im-

mediately apparent is the relationship between the density of points and look angle

with the exception of the linear static profiles for reasons mentioned in Table 5 con-

cerning scene dependency. Furthermore, the point density relationship to look angle

seen in Figure 60 corresponds well to relationship seen when RMSDE is compared

to look angle. During that analysis, it was determined the near nadir look angles

provided highly accurate reconstructions for the linear dynamic profiles, whereas the

linear static profiles struggled to produce identifiable results. The RMSDE relate to

the density of points as seen in the figure. At near nadir look angles linear dynamic

profiles exhibits the highest localized point density. Furthermore, linear profiles which

failed to reconstruct obviously have the lowest point densities.
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Figure 60. Localized density of linear profiles.

The circular and s-curve profiles also exhibit the same inverse relationships. At

look angles demonstrating high accuracy, the density of points is proportionally el-

evated to other look angles. On the surface this statement seems trivial. However

it reveals the interdependent nature of accuracy, density of points, determination of

camera motion, and finally richness of image collection. Rich image collections allow

for the extremely accurate reconstruction of the camera projection matrices. These

projection matrices define the epipolar relationships between cameras by establishing

the epipolar points and lines. The accuracy of the epipolar line calculation directly

relates to the quantity and quality of additional correspondences found. The addi-

tional correspondences lead to more reconstructed 3-D vertices and therefore higher

possibility of reconstruction accuracy.
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Figure 61. Localized density of circular and s-curve flight profiles.

5.6 Principle Images

Throughout this effort the criticality of camera frames has remained of pivotal

importance. The camera frames supply the correspondences which lead to eventual

3-D vertices, and PMVS2 outputs include not only the reconstructed vertices but also

the images in which the patch was calculated from. A brief investigation into which

images were used in the reconstruction was accomplished to determine if the number

of images or convergence angles could be reduced without negatively effecting the

reconstruction accuracy and the interplay involved when clustering images for parallel

processing.

Upon preliminary analysis, a distinct and unexpected trend was observed. Flight

profiles exhibiting positive attributes, such as highly accurate results and vertex rich

point clouds, shared a common multi-modal structure dependent on image distribu-

tion and frequency of use. Figure 62 is a histogram of the 50 input images identifying

both the frequency and individual camera frames used in the reconstruction. Aside
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from the multi-modal structure, the distribution reveals which images were omitted

during the dense reconstruction process. These images are removed from consider-

ation by CMVS since they are nearly identical and redundant images contribute no

additional information to the solution, increase computation time, and the short base-

line between images leads to significant z-depth errors. It is important to note the

sparse reconstruction process employs the entire data set and solves for all camera

matrices whereas the image distributions seen below are representative of a dense

point cloud.

(a) Highly Accurate Reconstruction (b) Poor Reconstruction

Figure 62. Principle images from excellent reconstructions exhibit multi-modal image
distributions (a) which is absent in poorly reconstructed images (b). Note low image
use in poorly constructed images compared to the high image use in the well behaved
counterparts.

All profiles were analyzed, and the multi-modal structure was confirmed to be

a property of all successful reconstructions. Furthermore, the circular profiles ex-

hibited similar multi-modal structure even though all camera centers were equally

spaced, target oriented, and identical distances from the target. The multi-modal

structure can be explained by observing specific characteristics of each pass. First in

both the linear and s-curve profiles, the pass can be segregated into pre and post-

nadir camera orientation groups. At this point an important distinction is required.

Images groups refer to collections of images which share similar pairwise photomet-
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ric scores whereas the term clusters is reserved for collection of images within the

CMVS process. The images contained within each group portray a different orien-

tation to the target area and therefore the images will relate more closely to one

another than images in a different group. Supporting this argument is the location of

the minima between each of the modes. In all linear and s-curve scenarios, the local

minima occurs at roughly image 25 or the image nearest to nadir segregating the pre

and post-nadir image groups. During reconstruction, PMVS2 segregates images into

groups denoted by V (p) in which the patch, or vertex p, is visible as determined by

Equation 39. Since the two major patch groups, pre and post-nadir, would clearly

contain different different V (p)’s, or image sets, two modes would be expected. The

circular passes would experience similar grouping of images associated with patches

at different locations in the target areas. Furthermore, the Gaussian structure within

each mode can be explained by a simple fact; images acquired in the middle of the

pre and post-nadir pass segments will more closely relate to images of that segment.

Knowledge of where the principle images occur and their relationship to the overall

reconstruction would aid immeasurably to ensure the right images are collected.

In the above explanation, it was assumed PMVS2 has visibility to all images

within the data set; however, this may not be true. CMVS properly eliminates

redundant images and clusters the remaining images into similar image sets. It was

already demonstrated in the above example, 24 of the 50 images were retained while

the remainder were rejected based on redundancy. A second data conditioning step

divides the remaining images into clusters as to not violate the maximum cluster

size. As stated in Table 2, the default value for maximum image cluster size was

30 images. In Figure 62, the default value was used but after elimination of similar

images only 20 remained, well within the size constraint. To verify this hypothesis

a CMVS/PMVS2 was rerun on the data with the maximum cluster size changed
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from 30 to 10. Under these conditions, 4 to 5 clusters would be expected. As seen

in Figure 63, overconstrained CMVS parameters can negate the ability of PMVS to

group images based on patch visibility.

(a) 30 images per cluster (b) 10 images per cluster

Figure 63. Relationship between the Maximum Cluster Size and multi-modal struc-
ture. The reduction of maximum cluster size allows for more clusters which manifest
themselves as additional modes on the image distribution charts.

When a maximum cluster size is selected which requires CMVS to produce two

clusters, additional insight is revealed. In Figure 64, a maximum cluster size of 14

images was enforced. This required CMVS to cluster the 26 remaining images into two

distinct clusters. This figure supports both arguments above in that the multi-modal

structures is dependent on both the maximum cluster size and PMVS2’s allocation of

images into V (p) defined image sets. Again the dual mode structure is seen; however,

now that two clusters are used as opposed to the original one cluster, the distribution

of images between clusters is seen in the red and blue bars. CMVS accurately split the

image set into clusters with similar viewing perspectives while PMVS2 weights the

central images to each cluster more than the others. The final observation available

is the overlap between the clusters occurring at their intersection. A small degree

of cluster overlap is required to ensure each cluster may be registered with another

upon the conclusion of parallel processing of each cluster. This overlap is directly
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analogous to the image overlap required to generate image correspondences.

Figure 64. Distribution of images between two clusters of max 14 images. The red and
blue bars represents each of the two clusters and the overlap occurring between the
two is required for final rectification of the two independently processed clusters.

Furthermore, the angle between the individual bimodal peaks occurring in the

linear flight profiles with a maximum cluster size of 30 was determined and plotted

against look angle as seen in Figure 65.

Figure 65. Principle Images used in linear passes. Note as angle from nadir increases
separation between primary images decreases.
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The graph reveals a trend common to all linear reconstructions: as look angle

deviates from nadir the angular separation between principle images decreases. This

can be explained by the gradual elimination of the pre and post-nadir point. At pure

nadir there is a clear distinction in image sets as each images independent sides of the

target area. As the look angle increases the prominence of this distinction fades as

more and more images are viewing a common side of the structure. Therefore as look

angle increases the distinction between images is reduced and all images are more

likely to be grouped together with the center image sharing the most commonalities

to all other images.

5.7 Case Study: Transformation to Real World Coordinate Systems

Inclusion of the camera’s IOPs and EOPs results into the SfM/MVS reconstruction

process results in a metric reconstruction with real world coordinates which provides

an avenue for a direct comparison to existing LIDAR 3-D data. This case study

presents preliminarily efforts in which this data was used to perform a coordinate

transformation from the relative SfM coordinates to real world. This endeavor would

be best performed during the SfM process, unfortunately Bundler and CMVS/PMVS2

do not allow insertion of known parameters with exception of focal length as measured

in pixels.

The relationship, x′ = Hx, previously related images, but it may also be used to

relate disparate datasets such as SfM/MVS and LIDAR 3-D reconstructions. Again,

the CLIF II 2007 and LIDAR data used in the first case study supply the neces-

sary information. The first task entails determining the correspondences between

the datasets required for accurate registration. Although no direct correspondences

between the LIDAR and SfM datasets exist, the actual camera’s EOPs were avail-

able which act as substitutes for the real world points contained within the LIDAR
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dataset. In such case the camera’s EOPs (x) allow transformation of the relative SfM

derived camera EOPs (x′) to real world coordinates. Walli showed the pseudo-inverse

solution, seen below, provides the necessary H to register the disparate datasets [35].

H = x′xT
(
xxT

)−1
(51)

The solution should relate the entire SfM reconstruction to real world coordinates

allowing the direct comparison to LIDAR data. Transformation results from SfM

camera coordinates to real world is seen in Figure 66 where it is immediately apparent

the transformation was successful. The original SfM coordinates, including camera

centers and scene vertices, were normalized to values between 0 and 1, and after

the transformation the camera centers were accurately projected to the real world

locations. Also note the fidelity of the SfM derived camera centers. The SfM process

can accurately identify the relative motion of the camera, however, not to the fidelity

of the true points.

Figure 66. Transformation of SfM camera positions (green) to real world coordinates
(black). Note minute variation in elevation as the collection airframe moved between
successive images.
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Thus far the analysis has centered about the camera centers since they provided

the required correspondences between the datasets. Unfortunately the homography

matrix did not accurately project the SfM scene vertices to accurate real world coor-

dinates as seen in Figure 67.

Figure 67. Transformation of all SfM vertices (blue) to real world coordinates in com-
parison to the LIDAR derived point cloud (red). The use of localized correspondences
results in a poor transformation of the global scene.

The failure of the homography matrix to accurately transform all SfM points is

twofold. First only correspondences between the SfM and real world coordinates were

sourced from an extremely small dataset unique to all SfM vertices. Limiting the cor-

respondences in this manner only provides the data for that limited set. Secondly,

derivation of the homography matrix requires correspondences amongst all three di-

mensions to accurately register two 3-D datasets. In this situation correspondences

only exist on a planar surface. The combination of these two factors only allows for

the correct transformation of the correspondences themselves and not for the global

scene. Since additional correspondences are unavailable, a method must be deter-

mined to allow direct insertion of the camera’s EOPs directly into the SfM process.

To date this method remains elusive, but remains a path for active future research.
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5.8 Operational Considerations and Impact

This effort’s salient feature is the applicability of laboratory models to real world

operations. The ability to create realistic 3-D scenes without complex LIDAR sys-

tems is of immense importance to the warfighter. Not only will this technology open

new opportunities but also augment or replace more expensive solutions. In today’s

budget constraints this attribute may be the most important. Therefore a brief dis-

cussion surmising the required flight parameters for a high quality 3-D reconstruction

is required.

5.8.1 linear static.

Linear flight profiles with fixed cameras are not a preferable method of data collec-

tion at near nadir collection geometries. The target area was frequently unidentifiable

at near nadir passes and only marginally accurate at look angles greater than 45◦.

However this collection method is widely implemented due to its ease of installation

and operation. In such case, the combination of orthogonal passes significantly im-

proves the reconstruction, and by limiting the reconstruction to only areas of overlap,

additional improvements may be realized. In fact, such data conditioning allows for

successful reconstruction of purely nadir passes. In SfM/MVS algorithm terminol-

ogy, the a linear profile with a static camera provides a meager data set with little

variability in both spatial and angular diversity as well as structure visibility due to

poor image overlap. Furthermore, these limitations reduce the maximum number of

camera frames and convergence angle necessary for adequate reconstructions. Finally,

the lack of rotation between the camera frames and scene introduces motion degen-

eracy and underconstrains the solution presenting a upper limit to the reconstruction

accuracy.
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5.8.2 linear dynamic.

Linear dynamic profiles present well formed reconstructions with minimal effort.

Reconstruction accuracy decreases as a function of increasing range and look angle

so their use should be limited to nadir and near nadir data collections. Beyond look

angles of 45◦, the performance drops sufficiently to warrant transition to linear static

flight geometries. Operationally, the linear passes require minimal resources to ex-

ecute, and the addition of an agile sensor is not uncommon on modern surveillance

assets. Computationally, the addition of a dynamic camera allows for sufficient diver-

sity to eliminate all degeneracies and provide improvements to linear static collections.

Furthermore, the agile sensor permits all images to contain the target increasing both

the number of cameras and convergence angles.

5.8.3 circular dynamic.

Circular dynamic flight profiles offer accurate and dense reconstructions similiar

to linear dynamic profiles. The long dwell time necessary for the collection reduces

the operational feasibility for such a collection. Furthermore, the apparent lack of

translation introduces motion degeneracy presenting an upper limit to the reconstruc-

tion. However the 360◦ view of the target area allows for complete reconstruction of

all building facets which deserves additional consideration in mission planning.

5.8.4 scurve dynamic.

The s-curve profile offers the most diverse data set, free of degeneracy, and near

360◦ target visibility. For these reasons it offers the most accurate and dense re-

constructions. Operationally, the pass benefits from a limited dwell time but high

complexity. If these complexities can be surmounted a s-curve dynamic pass offers

the highest accuracy reconstructions.
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5.9 Chapter Summary

This chapter quantified the likeness of the 3-D reconstruction to the actual scene

geometry for both controlled simulation results and synthetic real world environments.

Within the MATLAB simulation, it was determined an increase in the number of cam-

eras refines the estimated focal length which provides improved results. Furthermore,

a direct relationship between improved camera pose and reconstruction accuracy was

observed where both increased with convergence angle. Despite these relationships,

an expansive minima was seen in the reconstruction accuracy which highlights the

algorithm’s robust ability to produce accurate 3-D reconstructions over a wide range

of input parameters. Furthermore, several aerial profiles designed to mimic typical

reconnaissance profiles were analyzed for RMSDE and completeness. Linear static

profiles afforded the least accurate results at near nadir orientations; however, at

oblique angles greater than 45◦, this profile provided the most accurate reconstruc-

tions. On the other hand, linear dynamic profiles at near nadir provided extremely

accurate results but experienced a substantial reduction in accuracy at oblique angles.

Circular and s-curve profiles experienced comparable accuracy albeit at more compli-

cated aerial profiles and increased computational requirements. The distribution of

images within the algorithm provided insight into which images the SfM/MVS algo-

rithms heavily rely. A multi-modal distribution is seen which transitions to a purely

Gaussian distribution as look angle increases. Finally the transformation of SfM de-

rived vertices from SfM relative coordinates to real world coordinates was pursued.

The transformation unsuccessfully projected the SfM vertices back to real world co-

ordinates due to the limited availability of correspondences between the disparate

datasets. However if additional correspondences or an insertion point into the SfM

process is determined the transformation to real world coordinates will be successful.
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VI. Recommendations and Future Work

The quantification of reconstruction accuracy and completeness was examined in

this effort. During the course of this effort additional research avenues were uncovered,

but restrictions in time and resources did not permit their investigation.

The first area of additional research is continuation of the work previously ac-

complished on integrating actual camera IOP/EOP matrices into the reconstruction

solution. Modern surveillance camera and aircraft sensor data can be fused to provide

the exact placement of the camera in terms of latitude, longitude, altitude, yaw, pitch,

and roll. This information coupled with foreknowledge of the sensor’s focal length,

provides all the necessary information to compute an exact camera projection matrix,

Π1, Π2,. . . , Πn. As seen in the MATLAB simulation slight deviations in the focal

length and camera pose introduce significant errors into the 3-D point triangulation.

Secondly, the models used to determine the RMSDE involved the manual selec-

tion of points within the point cloud to represent each of the twenty six reference

vertices. Unfortunately some aerial profiles did not image a specific vertex, therefore,

a reconstruction is impossible. As a result, the closest vertex to inferred reference

point was selected. A fundamental understanding of manmade objects is they appear

as simple geometric shapes. Therefore, it should be feasible to fit shapes within the

point cloud to represent the various structures. This allows for the exact determina-

tion of a building face if only the roof and ground plane are known. A much improved

representation of the actual scene would result. Furthermore, this would provide the

necessary step to implement an image derived reconstruction in higher order physics

based simulator such as DIRSIG.

Thirdly, it was shown additional cameras and wide convergence angle improve

results but at the cost of computing cycles and processing time. Therefore, a real-

time reconstruction would require a minimal data set with sufficient information to
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retain the required degree of accuracy. Pursing the minimal information requirement

for environmental sensing will pave the way for robotic vision. To support this effort,

the minimum convergence angle, η found in Equation 1, must be determined to

adequately relate the required baseline distance, approximate height of target, and

target distance.

Finally, the natural evolution of this effort is application to real world data. Test-

ing these principles against video footage from aerial vehicles would provide the final

validation to justify the use of complicated flight paths and dynamic sensors.
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VII. Major Accomplishments

This section identifies the distinct contributions of the author as a direct result of

the research discussed in this thesis.

7.1 Effects of Variable Viewing Geometry on Reconstruction Accuracy

Within the MATLAB simulation, the influence of variable convergence angles

and number of camera frames required on the accuracy of epipolar reconstructions

was determined. Thresholds of 3 camera frames at a 6◦ convergence angle pro-

duce highly accurate results when perfect knowledge of the image correspondences

is known. Subsequent addition of camera frames and an increase in convergence

angle only marginally improve reconstruction accuracy. This dependency allows for

tradeoffs between operational collection requirements and computer processing and

the required accuracy. Furthermore, analysis of these dependencies showed a clear

correlation between camera frames and convergence angle to estimated focal length

and camera pose estimation respectively. This provides the nascent research to seed

further research and direct additional investigations.

7.2 Effects of Operational Flight Profiles on 3-D Scene Reconstruction

Previous research entailed choreographed collections of images or massive Internet

wide searches resulting in thousands of images. This effort explored the tradeoffs when

image collection is limited to typical overhead reconnaissance flight profiles utilizing

dynamic and static sensors. As a result the necessary connection from laboratory

to field operations was established providing a basis by which operational test and

evaluation planners can plan further testing and transition to operational use.
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7.3 Existence of Prominent Images

The existence of bridge images within a data set has been documented; however,

explanations into their origin stem from unification of disparate image sets. This

research shows the bridge images do exist as seen in the overlap of imaging clusters

and groups. However these bridge images are not the most prominently used images

within the data set. That distinction is reserved for images which share similar

pairwise photometric scores with other images in the collections. Reconstruction

algorithms heavily rely upon these images for vertex generation and therefore their

collection is paramount at the distinct look angles.

7.4 MATLAB Tools

A suite of MATLAB tools was generated in this effort encompassing a gamut of

investigatory tools from software to generate and reconstruct simple 3-D objects to

analytical tools to probe the cryptic output of the reconstruction algorithms. These

tools include:

• Epipolar reconstruction from user created 3-D objects.

– Allows for the generation of computer generated images with complete
control of the number and location of cameras.

– Produces projective, affine, and euclidean reconstruction models with RMSDE
accuracy to base structure.

• Bundler and PMVS/CMVS data extraction tools.

• Extraction of sparse and dense point clouds as well as corresponding camera
fustrums to MATLAB environment.

• Visualization and calculation of ground plane projections from cameras at SfM
generated locations and orientations. Furthermore calculated image overlap
between selected cameras or all cameras.

• Extraction of images used in the reconstruction of each vertex.
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VIII. Conclusion

This effort explored the impacts of viewing geometry on 3-D scene reconstruction

from 2-D imagery using Structure from Motion (SfM) and Multi-view Stereo (MVS)

reconstruction techniques. As with all data processing and reconstruction algorithms

the quality and fidelity of input data has a direct effect on the results and the epipolar

techniques used were no exception. The salient goal of this effort was to determine

optimal flight profiles necessary for accurate 3-D reconstruction of real world targets.

However, such an effort requires foreknowledge of the SfM and MVS reconstruction

algorithms. For this reason, a multi-phase effort into the viewing effects on 3-D re-

construction was pursued. The first phase of the effort required the implementation

of a fully programmable software package in which image generation and scene re-

construction can be strictly controlled. Leveraging the knowledge gained from this

effort, the second phase used academic 3-D reconstruction software packages to re-

construct a typical urban scene based on images acquired from typical airborne flight

reconnaissance profiles.

In support of the first phase, a high fidelity computational simulation was suc-

cessfully implemented within the MATLAB environment. The simulation introduced

a simple 3-D structure in which a series of images at variable spatial positions and

rotational orientations were acquired. By varying the number of camera frames from

2 to 20 and convergence angles from 1◦ to 100◦ in 1◦ increments, the relationship

between the number of camera frames and convergence angle on reconstruction ac-

curacy was determined. The reconstruction technique allows observation of a lower

threshold required in which 3 or more cameras were required at a convergence angle

of 6◦. With only 2 cameras the extracted focal length frequently assumed imaginary

or null values despite an initial guess of 400 mm. As the number of camera frames

increased, the algorithm ability to determine the actual focal length improved even-
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tually reaching 500±0.02 at 7 camera frames. Furthermore wider convergence angles

allowed for precise reconstruction of the camera extrinsic parameters. The improved

camera projection matrices reduce triangulation error again resulting in improved ac-

curacy. Once these thresholds are met, the SfM processes proved rather invariant to

convergence angle and number of camera frames. This robustness permits greater op-

erational freedom when collecting the target imagery. Despite the simulation’s ability

to provide detailed information regarding the operation of the SfM and MVS algo-

rithms, the simulation was limited by both lack of occlusions and perfect knowledge

of all correspondences. Therefore the second phase introduced real world synthetic

scenes and images acquired from aerial surveillance platforms.

The 3-D rendering environment, Blender, was used to generate 2500 images en-

compassing 44 unique aerial flight profiles in which multiple combinations of the

profiles resulted in the evaluation of 94 possible flight geometries. The flight profiles

were reminiscent of typical reconnaissance patterns including linear, circular, and s-

curve flight geometries including both static and agile sensors. The reconstructions

generated from each pass were analyzed to quantify the likeness to the original scene

including quantifiable measures such as root mean square accuracy and localized den-

sity of vertices within the target area. Linear profiles mounted with static cameras

struggled to provide recognizable reconstructions of the target area at nadir or near

nadir whereas dynamically controlled sensors excelled at these areas. Conversely, at

oblique look angles, in which the look angle at the point of closest approach exceeds

45◦, static cameras excelled whereas dynamic cameras failed. Circular orbits with the

capability of imaging the target area from all sides only provided marginally better

results despite the full target visibility and doubling of input images. S-curve profiles

provided the richest set of images providing variability in both range to target, dynam-

ically controlled sensors, and near 360◦ target visibility. The diversity of data allowed
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for extremely dense and accurate reconstructions only rivaled by the combination of

two orthogonal linear static passes. The results of multiple passes permitted sufficient

information to improve upon the independent linear passes. Furthermore, when only

overlapping images from the two passes were included, results were further improved

due to the elimination of anomalous 3-D points generated from a single pass. Finally,

an investigation into the distribution of images within the algorithms permitted ob-

servation of a multi-modal distribution of image use within the reconstruction. This

infers the algorithm heavily depends on only a select number of images at precise

positions within the flight profiles. This dependency on critical image location was

mapped for all linear profiles where it was shown the angle between the prominent

images is inversely proportional to the look angle.

In summary, the interdependent nature between RMSDE accuracy, density of

points, determination of camera motion, self calibration of camera focal length, and

finally richness of image collection demand a rigorous study into the underpinnings

of Structure from Motion. Multiple flight profiles demonstrated the ability to recon-

struct ground targets with a high degree of accuracy and completeness. Linear flight

paths with agile sensors proved the most feasible in terms of collection complexity and

reconstruction accuracy suggesting application of these methods to overhead electro-

optical imagery collected over denied areas. Rich image collections including both

spatial and angular diversity in image correspondences to allow for the computation

of a robust fundamental matrix and therefore an extremely accurate reconstruction.

However, as was seen in the simulations, the process is robust to variances in the num-

ber of camera frames and convergence angles once the minimum thresholds are met.

With these principles in mind, Structure from Motion derived 3-D reconstructions

are a powerful tool for academic researchers, military operators, national decision

makers, and the common individual with an interest in the 3-D world.
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Appendix A. Levenberg Marquardt Algorithm

The Levenberg-Marquardt (LM) algorithm is an iterative technique which solves

for the minimum of non-linear least squares problems. The algorithm leverages the

strengths of both the steepest descent and Gauss-Newton regression methods and is

nearly guaranteed to converge quicker than either function acting independently. For

these reasons the Levenberg-Marquart technique has become the industry standard

in the computer vision fields to rapidly converge to optimum solutions when adjusting

camera parameters and vertex locations.

The steepest descent method incrementally approaches the minima by propor-

tionally stepping along local negative gradient. In regions with significant gradients

the steepest descent quickly converges; however, it slows in regions of low gradient.

Functionally the method can be seen as

pi+1 = pi −∇f (pi) (52)

where ∇f (pi) is the gradient of the function at the current position [14]. It is prefer-

able for a function to quickly step while in small gradient regions to facilitate rapid

convergence and slowly increment towards the minimum when the gradient is steep

to avoid overshooting the minimia [24].

The Gauss-Newton uses both the first and second derivatives to determine both

the direction and magnitude of the local curvature. Expanding the local gradient

through with a Taylor series expansions, it can be shown,

pi+1 = pi −
(
∇2f (pi)

)−1∇f (pi) (53)

where higher order terms are ignored [16].

Levenberg blended the two methods to capture the strengths to each. In doing so
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he created the function,

pi+1 = pi − (H + λI)−1∇f (pi) (54)

where the Hessian can be approximated by the Jacobian matrix, H = ∇2f (x) ≈

J (x)T J (x), and λ is the weighting factor emphasizing either the steepest descent or

Gauss-Newton methods. During each iteration if the error is reduced and iteration

accepted, λ is reduced, thereby deemphasizing the method of steepest descent. On

the other hand, if the iteration is not accepted corresponding to an error increase, λ

is increased.

Finally Marquardt improved upon Levenberg’s refinements by using the Hessian

matrix, H consisting of the second-order partial derivatives of the function describing

the local function curvature, to include larger movements along the gradient according

to the localized curvature,

pi+1 = pi − (H + λdiag[H])−1∇f (pi) (55)

where the identity matrix, I, has been replaced with diag[H] to appropriately scale

the weighting factor, λ [15].
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Appendix B. Results Summary
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linear dynamic xxx1000

Sparse Point Cloud Dense Point Cloud Dense Point Cloud-Ground Plane

−30D

−45D

−60D

60H

45H

30H

15H

140



linear dynamic xxx1000

Sparse Point Cloud Dense Point Cloud Dense Point Cloud-Ground Plane

0H

−15H

−30H

−45H

−60H

141



linear static xxx1000
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linear static xxx1000
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linear static xxx1000
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linear staticcross xxDxxH
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linear staticcross xxDxxH
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linear staticcross xxDxxH
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linear staticcross xxDxxH
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linear staticcrosslimited xxDxxH
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linear staticcrosslimited xxDxxH
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linear staticcrosslimited xxDxxH
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linear staticcrosslimited xxDxxH
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circular dynamic xxD1000
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scurve dynamic xxD1000
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Appendix C. Analysis Summary

Table 11. Summary results of all aerial profiles: circular, s-curve, linear static, linear
dynamic, linear static cross, and limited linear static cross. The number in parenthesis
represents the overall ranking of the pass for the specific analytical technique, accuracy
or completeness. The final column is the averaged ranking for a final scoring of the
profile where a lower number represents a better score.

Aerial Profile Accuracy Completeness Pass Score
circular dynamic 15D1000 0.0432(16) 9265(12) 14.0(10)
circular dynamic 30D1000 0.0707(43) 13654(2) 22.5(20)
circular dynamic 45D1000 0.0641(37) 7685(29) 33.0(31)
circular dynamic 60D1000 0.1701(74) 3214(65) 69.5(73)
scurve dynamic 15D1000 0.0501(22) 9928(10) 16.0(15)
scurve dynamic 30D1000 0.0231(1) 9014(15) 8.0(3)
scurve dynamic 45D1000 0.0432(17) 10133(8) 12.5(7)
scurve dynamic 60D1000 fail fail —
linear dynamic -60D1000 0.0983(60) 1102(79) 69.5(74)
linear dynamic -45D1000 0.0943(58) 2798(67) 62.5(63)
linear dynamic -30D1000 0.1014(61) 5208(53) 57.0(58)
linear dynamic -15D1000 0.0534(26) 7111(36) 31.0(28)
linear dynamic 0D1000 0.0314(2) 8084(26) 14.0(12)
linear dynamic 15D1000 0.0431(15) 8104(25) 20.0(18)
linear dynamic 30D1000 0.0785(48) 6122(48) 48.0(49)
linear dynamic 45D1000 0.1132(65) 3563(61) 63.0(64)
linear dynamic 60D1000 fail 913(81) —
linear dynamic -60H1000 0.0.0838(53) 1530(75) 64.0(65)
linear dynamic -45H1000 0.0914(55) 4147(55) 55.0(57)
linear dynamic -30H1000 0.0550(28) 6230(47) 37.5(38)
linear dynamic -15H1000 0.0603(33) 9307(11) 22.0(19)
linear dynamic 0H1000 0.0354(7) 9072(14) 10.5(4)
linear dynamic 15H1000 0.0449(18) 8028(27) 22.5(21)
linear dynamic 30H1000 0.0668(39) 6303(44) 41.5(43)
linear dynamic 45H1000 0.0708(44) 3859(59) 51.5(56)
linear dynamic 60H1000 0.0930(57) 1412(77) 67.0(71)
linear static -60D1000 0.0833(52) 1258(78) 65.0(69)
linear static -45D1000 0.0.0546(27) 2769(68) 47.5(48)
linear static -30D1000 0.0566(30) 3767(60) 45.0(46)
linear static -15D1000 0.0670(40) 3965(58) 49.0(52)
linear static 0D1000 fail 711(83) —
linear static 15D1000 fail 629(84) —
linear static 30D1000 fail 1082(80) —
linear static 45D1000 0.1654(72) 2098(72) 72.0(76)
linear static 60D1000 0.0920(56) 1777(73) 64.5(68)
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Aerial Profile Accuracy Completeness Pass Score
linear static -60H1000 0.0872(54) 1615(74) 64.0(66)
linear static -45H1000 0.1213(67) 3460(62) 64.5(67)
linear static -30H1000 0.0522(25) 6690(42) 33.5(33)
linear static -15H1000 0.1026(62) 8251(22) 42.0(45)
linear static 0H1000 fail 717(82) —
linear static 15H1000 0.0590(32) 6895(38) 35.0(34)
linear static 30H1000 fail 3433(63) —
linear static 45H1000 0.0797(49) 3158(66) 57.5(59)
linear static 60H1000 0.1760(75) 1519(76) 75.5(78)

linear staticcross 45D-45H fail fail —
linear staticcross 45D-15H 0.0675(42) 10194(7) 24.5(22)
linear staticcross 45D15H 0.1099(64) 5904(52) 58.0(60)
linear staticcross 45D45H 0.0973(59) 2273(71) 65.0(70)
linear staticcross 30D-30H 0.0672(41) 7273(34) 37.5(39)
linear staticcross 30D0H 0.0356(8) 6353(43) 25.5(24)
linear staticcross 30D30H fail fail —
linear staticcross 15D-45H 0.1323(69) 7509(31) 50.0(54)
linear staticcross 15D-15H 0.1051(63) 8916(16) 39.5(42)
linear staticcross 15D15H fail fail —
linear staticcross 15D45H 0.1165(66) 10374(6) 36.0(35)
linear staticcross 0D-30H 0.0643(38) 7244(35) 36.5(36)
linear staticcross 0D0H fail fail —
linear staticcross 0D30H 0.1530(71) 2743(69) 70.0(75)

linear staticcross -15D-45H 0.0503(23) 11586(4) 13.5(9)
linear staticcross -15D-15H 0.0340(5) 8491(19) 12.0(6)
linear staticcross -15D15H 0.1426(70) 11999(3) 36.5(37)
linear staticcross -15D45H fail fail —
linear staticcross -30D-30H 0.1872(77) 2463(70) 73.5(77)
linear staticcross -30D0H 0.0493(20) 6245(45) 32.5(30)
linear staticcross -30D30H fail fail —
linear staticcross -45D-45H 0.0761(46) 5942(51) 48.5(50)
linear staticcross -45D-15H 0.0427(14) 15261(1) 7.5(2)
linear staticcross -45D15H 0.0494(21) 9993(9) 15.0(14)
linear staticcross -45D45H 0.0765(47) 5176(54) 50.5(55)

linear staticcross limited 45D-45H fail fail —
linear staticcross limited 45D-15H fail fail —
linear staticcross limited 45D15H 0.0616(34) 7794(28) 31.0(27)
linear staticcross limited 45D45H 0.1678(73) 3295(64) 68.5(72)
linear staticcross limited 30D-30H 0.1289(68) 7559(30) 49.0(51)
linear staticcross limited 30D0H 0.0833(51) 7349(33) 42.0(44)
linear staticcross limited 30D30H fail fail —
linear staticcross limited 15D-45H 0.1833(76) 6235(46) 61.0(62)
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Aerial Profile Accuracy Completeness Pass Score
linear staticcross limited 15D-15H 0.0759(45) 8605(17) 31.0(26)
linear staticcross limited 15D15H 0.0322(3) 8225(23) 13.0(8)
linear staticcross limited 15D45H 0.0504(24) 7067(37) 30.5(25)
linear staticcross limited 0D-30H 0.0364(9) 9079(13) 11.0(5)
linear staticcross limited 0D0H 0.0639(36) 6731(41) 38.5(40)
linear staticcross limited 0D30H 0.0552(29) 6092(49) 39.0(41)

linear staticcross limited -15D-45H 0.2254(78) 6785(40) 59.0(61)
linear staticcross limited -15D-15H 0.0325(4) 8206(24) 14.0(11)
linear staticcross limited -15D15H 0.0424(13) 8426(20) 16.5(16)
linear staticcross limited -15D45H 0.0504(24) 7067(37) 30.5(25)
linear staticcross limited -30D-30H 0.0407(11) 6868(39) 25.0(23)
linear staticcross limited -30D0H 0.0458(19) 8274(21) 20.0(17)
linear staticcross limited -30D30H 0.0577(31) 7455(32) 31.5(29)
linear staticcross limited -45D-45H 0.0623(35) 3994(57) 46.0(47)
linear staticcross limited -45D-15H 0.0353(6) 11495(5) 5.5(1)
linear staticcross limited -45D15H 0.0421(12) 8598(18) 15.0(13)
linear staticcross limited -45D45H 0.0623(35) 3994(57) 46.0(47)
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Appendix D. Software Guide

D.1 Bundler

This section details the installation procedures used by the author to install and

run Bundler to generate the necessary sparse point clouds and camera parameters.

D.1.1 Bundler Installation.

These steps are reiterated from the Bundler homepage [2] with several modifica-

tions specific to location of necessary libraries and support executables.

1. Download the necessary binary distribution package, bundler-v0.3-binary.zip
from http://phototour.cs.washington.edu/bundler/ and extract it into a direc-
tory, thereafter referred to as the BASE PATH.

2. Bundler relies on bash and perl installations. The easiest environment to run
these scripts is through cygwin. When installing cygwin, all packages must be
installed which is not the default option.

3. Download sift.exe from http://www.cs.ubs.ca/∼ lowe/keypoints/ and copy
file into the BASE PATH\bin folder.

4. RunBundler.sh must be modified to include the present working directory.

(a) Change line 17 from $BASE PATH=$(dirname$(which $0)) to BASE PATH=$PWD

D.1.2 Bundler Operation.

1. Prior to running Bundler all images must be placed in a common folder and
resized to ensure dimensions do not exceed 2000-by-2000. This requirement is
specifically for the sift.exe operation.

2. Open cygwin and navigate to folder containing RunBundler.sh.

3. Enter sh RunBundler.sh filepath/ into the command line.

4. Bundler will immediately begin and follows four steps:

(a) Extract focal length from image metadata.
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(b) Extracts keypoints from each image.

(c) Matches keypoints from image to image. This steps requires additional
time for each picture in the data set since the image is being matched to
all previous images.

(d) Running Bundler. At this point Bundler is determining camera pose and
triangulating all 3-D vertices.

Upon conclusion a new folder will be created in the directory containing runbundler.sh.

The contents of the folder will contain a bundle.out file containing all the informa-

tion from the sparse point cloud generation including camera parameters and 3-D ver-

tices. Additionally a series of bundle xxx.out and points xxx.out files. Each file

contains additionally information as they are processed and outputted from bundler

as the program in running. Select the points xxx.out with the largest number, typ-

ically the number of images used, and open with Meshlab or CloudCompare to view

results [8, 4].

D.2 PMVS2/CMVS

This effort used a version of PMVS2/CMVS specifically modified for the Microsoft

Window’s operating systems developed by Pierre Moulon.

D.2.1 PMVS2/CMVS Installation.

1. Download PMVS2/CMVS binary packages from

http://blog.neonascent.net/archives/bundler-photogrammetry-package/. Specif-
ically the SFM.zip toolkit was used.

2. Extract all files.

D.2.2 PMVS2/CMVS Operation.

1. Create a folder in which raw .jpeg images and bundler output files co-reside.
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2. Copy the following PMVS/CMVS files into the folder.

(a) denseRecon.vbs

(b) denseRecon batch.vbs

(c) EXIFwrite.vbs

(d) makelist.bat

(e) matrix.bat

(f) matrix-ListWSize.bat

3. Double click makelist.bat to generate a list.txt which contains the filenames
of all images within the folder.

4. Click denseRecon.vbs and follow instructions requesting variable inputs. See
Methodology chapter for additional guidance.

5. Click Run

PMVS2/CMVS will execute and upon completion will generate a host of new

files. The most important files pertaining to the dense point cloud are located in the

...\PMVS\models folder. Each option-000x.txt.patch and option-000x.txt.ply

contain the necessary information to view and analyze the dense point cloud. Within

the option-000x.txt.patch patch information including the location, normal pro-

jection, and camera frames the patch was extracted from. The option-000x.txt.ply

simply provides a direct viewing capability of the point cloud via Meshlab or Cloud-

Compare. Furthermore when multiple option-000x.txt.patch or option-000x.txt.ply

files exist they must be merged to be view the point cloud in its entirety.

D.3 Blender Image Acquisition

Blender, a 3-D animation studio, offers the ability to generate images from a

variety of positions of user generated 3-D scenes or objects.
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D.3.1 Blender Installation.

Blender and LuxRender installation is relatively straight forward as both software

products have reached a satisfactory level of maturity.

1. Download Blender 2.5 from http://www.blender.org/download/get-blender/. Note
at the time of this installation Blender 2.51 was the current distribution.

(a) Install per Blender instructions.

2. Download LuxRender from http://www.luxrender.net/en GB/blender 2 5.

(a) Install per LuxRender instructions.

(b) After installation LuxBlend25 must be activated with Blender.

i. Open Blender and click User Preferences→Add-Ons→Render.

ii. Click LuxRender to activate.

iii. Proceed to the main Blender page and select LuxRender from the drop
down rendering engine selection list, see label K in Figure 68.

D.3.2 Blender Operation.

The following shortcuts will greatly ease familiarization process with Blender.

• Right click selects an object in 3D space.

• Click and hold middle mouse button to rotate object, holding Shift at the
same time will translate the object without rotating.

• Numberpad 7 will automatically center the map in to look straight down

• Numberpad (1-6,8,9) will automatically reorient the map to a variety of per-
spectives

• Numberpad 0 will show camera view.

• It is suggested to move objects by left clicking and holding the axes arrows once
the object is selected, thereby restricting movement to the specific axis.
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Figure 68. Command window for blender.

1. Open blender.exe.

2. Click File→Open→SadrCITY.blend or import necessary .obj file, see label A.

3. Ensure ground, vehicle, and landscaping textures have been applied by selecting
Viewport Shading→Textured, see label B. If background appears fuschia in
color follow the sub-steps. Note Textured shading requires significant memory.
If computer lags increases revert back to Solid texture. If ground texture has
not been preloaded follow these steps:

(a) Click Editor→Text Editor, see label C.

(b) Open existing text block Alt-O.

(c) Navigate to and double click Add Texture to Sadr City Model.py.

(d) Ensure path variable contains the file location for the .jpg texture files.
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(e) Save script, Alt-S.

(f) Run script, Alt-P.

(g) Verify successful application of textures by returning to 3D View and Tex-
tured Shading.

4. We first designate the number of images we wish to acquire.

(a) To do so select the camera icon along the properties bar (see label D),
navigate to the dimension tab, and ensure your frame range starts with 1,
terminates at the desired end frame, and step size is 1, see label E.

(b) Go to the timeline and ensure frame 1 is selected, see label F.

5. Add a light source to the file by clicking Add→Lamp→Sun. Position is irrelevant
as a sun simulation lamp is place at a point of infinity to simulate parallel rays
of radiance.

(a) Select the sun in the 3D view represented by a small dot with eight rays
radially emanating.

(b) Select Object icon from the property bar (see label D) and set rotation
angle for the incident sunlight. All images rendered in this effort used a
sun angle of −45◦ in the x-direction.

6. Add a path for our camera to follow by clicking Add→Curve→Path.

(a) With path still selected you can position the path at any point in the work-
ing environment. For a direct nadir pass over the target of HB11 House1

input a location of (−0.02798, 0.140, 1.000) in the object tab of the prop-
erties toolbar. An altitude of 1 was maintained throughout this effort.

7. Add a camera to follow the path by clicking Add→Camera.

(a) First click movie camera icon in the property bar, see label D, and ensure
the lens is in perspective not orthographic mode and select appropriate
focal length (50mm used).

(b) With camera selected press Shift and right click the path. Path will now
be highlighted in orange whereas the camera will assume a redish-orange
coloration.

(c) Press Ctrl-P to set cameras set parent Follow Path.
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(d) If successful a dotted line will now connect the frustrum of the camera to
the beginning of the path.

8. Now we must properly position the camera on the path and insert keyframes.

(a) Select the camera by right clicking on any of the lines depicting the camera
frustum.

(b) By left clicking and holding on each of the colored coordinate axes drag
the camera to the location indicated by the dotted line. It is easiest to
resolve the cameras z position by inputting 1 within the object tab of the
property toolbar. For this effort I simply indicted a x-location of -1.

(c) Click Insert Keyframe→Location, see label G. Location box will appear
yellow and green line on timeline will also turn yellow.

(d) Return to timeline and select the last frame, see label F.

(e) Camera will automatically translate to the mirror image on the other side
of the target area.

(f) Click Insert Keyframe→Location

9. If a dynamic camera is required.

(a) Right click camera frustum to select.

(b) On the property bar, select the chain link icon→Add Constraint→Track

To. For the target select HB11 House1 and to correctly orient camera input
To: -Z and Up: Y

10. Ensure camera moves steps linearly throughout path.

(a) Select Graph Editor from the editor button and ensure the red line is lin-
ear. This line slope determines the stepping distance between each camera
frame. The default line in not linear as to facilitate a smooth start and
finish for the camera motion. This adds unnecessary complications to ex-
tracting the real camera location.

(b) Return to 3D view.

11. At this point the path should be complete. Test by clicking play arrow, see label
H, on the timeline and ensure the camera iteratively steps from the starting
point to the end point. Additionally pressing Numberpad 0 will show view
from camera focal point.
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12. Setup of the image acquisition sequence.

(a) Click camera icon from property bar.

(b) Select required resolution in the dimensions box, do not dismiss the scaling
percentage. Set Scaling to 100% for full resolution as indicated above.

(c) Select save location and name in the output tab, see label I. Blender will
automatically add a camera number to each individual frame.

(d) Configuring LuxRender Engine, see label J.

i. Ensure LuxRender is selected rendering engine, see label K.

ii. Select Metropolis Light Transport (unbiased-recommended)

iii. Rendering Mode: Internal (Allows for animation collection without
interruption)

iv. Renderer: Sampler (traditional CPU) To date the hybrid or GPU
render assist does not work

v. Within the sampler tab select Halt SPP: 15. This dictates how may
samples per pixel are required. Larger numbers result in less noise but
rendering time increases exponentially.

13. Running the animation.

(a) Return to the camera icon in the property bar, see label L, and there are
two options: image or animation.

i. Image will only render a single photograph and is often a useful veri-
fication all parameters have been correctly implemented.

ii. Animation processes all images sequentially

Blender will output several files including the .jpeg files used in the reconstruction.

First a .lxs file contains the necessary information Blender passed to LuxRender to

properly render the scene. LuxRender in return provides a .png back to Blender for

final processing which results in the final .jpeg images.
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